

Journée technique CIBE vendredi 3 juillet 2015 à DIJON (21)

Bois-énergie et chauffage urbain

Une opportunité pour la création, l'extension et l'interconnexion de réseaux

Avec le soutien de

Suivi et optimisation des réseaux de chaleur

03 Juillet 2015

Cadre de l'intervention

- Les 10 dernières années et en particulier depuis 2009 ont été marquées par un développement continu et soutenu du nombre de chaufferies bois installées.
- L'objectif premier de la filière a été « de faire sortir » des projets, et un fort accent a légitimement été porté sur cet accompagnement, avec deux leviers principaux :
 - l'animation de terrain, via les ALE, EIE, associations EnR et/ou forêt-bois,
 - des aides à l'investissement, avec ce bel outil qu'est le fond chaleur renouvelable.
- Un nouvel enjeu est apparu, fondamental : la structuration et sécurisation de la filière d'approvisionnement.
- Un autre doit également être mieux pris en compte, avec des outils d'accompagnement à développer : le suivi et l'amélioration continue de la performance des installations, cette performance relevant de plusieurs thèmes, <u>liés</u>:
 - **energétique**: taux de couverture EnR, rendements,
 - économique : prix de la chaleur, stabilité et compétitivité dans le temps,
 - **environnementale**: émissions, gestion des cendres et suies, ...
 - **qualité de service**, sur l'exploitation mais aussi vers les abonnés.

- Kalice, bureau d'études et d'AMO spécialisé en chaufferies et réseaux de chaleur EnR, a développé et conduit plusieurs missions et s'est largement investit depuis 3 ans sur ce sujet de la performance :
 - audit et suivi mensuel (sur 1 à 2 ans) de 8 réseaux de chaleur bois énergie gérés en régie, en Rhône Alpes, ne partenariat avec Rhonalpénergie Environnement et l'association des communes forestières,
 - le suivi d'exploitation (mensuel) de 5 réseaux bois énergie dont nous avons été AMO en amont,
 - audit de 4 chaufferies bois énergie en Bourgogne (pour la Région et l'Ademe Bourgogne),
 - étude des coûts d'investissement et d'exploitation de 120 chaufferies/réseaux bois énergie (2009-2013), en partenariat avec Biomasse Normandie, pour le compte de l'Ademe.
- Le constat est sans équivoque : il existe de fortes marges d'optimisation des projets bois énergie, surtout sur les petites et moyennes installations (< 3 MW bois).
- Sont présentées ci après des pistes pour s'inscrire dans cette nécessaire dynamique.

Au niveau du dimensionnement des installations

- Un point central, qui perdure depuis de nombreuses années : le surdimensionnement de la chaudière bois : il dépasse souvent les 50%
- C'est un problème à plusieurs niveaux :
 - réduit notablement le rendement de production (entre 15 et 30%),
 - conduit à un taux de couverture bois médiocre (<75% au lieu des 90% visés), la chaudière ne pouvant fonctionner en début et fin de saison de chauffe,
 - o l'investissement (et les aides publiques mobilisées) est sous utilisé,
 - et donc à un prix de l'énergie globale (bois + appoint) élevé.
- O Premier levier : le dimensionnement soigné des besoins et de la puissance des abonnés
 - Ce sont ces valeurs qui vont déterminer la puissance en chaufferie.
 - Une attention plus grande doit y être portée, dès l'étude de faisabilité, car ces valeurs ne sont généralement plus remises en cause sur la suite du projet (le maître d'ouvre ne disposant généralement pas du budget pour mener ce travail, long)
 - Cela milite pour une meilleure pris en compte du temps alloué à ce volet lors des études amont (dont les prix ont été quasiment divisé par 2 en 10 ans ...).

Elles doivent être issues :

- o du relevé des consommations, Dju sur 3 ans à minima,
- o de l'analyse précise du fonctionnement du chauffage et de l'ECS, et donc des intermittences, volume des ballons ECS, puissances appelées ...
- o du potentiel d'optimisation de la régulation, puis de maitrise de l'énergie sur le bâtiment,
- o du calcul du nombre d'heures équivalent pleine puissance sur l'année, comparé aux valeurs standard par typologie de bâtiment : de 1200 heures pour un gymnase à 2900 h pour un hôpital.

Exemple sur un cas réel :

- entre 20 et 60 % d'écart entre la puissance souscrite (estimée en amont) et la puissance réellement appelée, par abonné
- et 40% au global!

	Consommation MWh/an	Puissance souscrite KW	équivalence heures pleine puissance	Référence nbre d'heures	Ecart sur l	Puissance en %
Batiment A	120	180	667	1250	-84	-47%
Bâtiment 2	218	220	991	1250	-45,6	-21%
Bâtiment 3	51	60	850	1250	-19,2	-32%
Bâtiment 4	288	400	720	1950	-252	-63%
Bâtiment 5	475	500	950	1350	-148	-30%
Bâtiment 6	45	60	750	1351	-27	-44%
Bâtiment 7	203	140	1450	1850	-30	-22%
Bâtiment 8	76	90	844	1850	-49	-54%
Bâtiment 9	75	75	1000	1850	-34	-46%
Bâtiment 10	97	100	970	1850	-48	-48%
Bâtiment 11	13	20	650	1250	-10	-48%
Bâtiment 12	7	20	350	1850	-16	-81%
	1668	1865	894		-763	-41%

- O Second levier : le dimensionnement de la puissance bois .. et du nombre de chaudières bois
 - Bien séparer somme des puissances souscrites et puissance appelée sur le réseau !! Cette confusion est souvent présente sur les installations auditées.
 - Nécessité de simuler, via les intermittences de chaque bâtiment, les puissances appelées jour par jour (monotone)
 - Apparait la notion de foisonnement, qui peut varier selon le nombre et la diversité des abonnés – de 15 à 50 %!
- Là encore, calculer le nombre d'heures d'équivalent pleine puissance de la/les chaudières bois
 - Viser à minima 2 500 h /an pour un petit réseau rural ... et 3 500 h pour un réseau urbain de taille moyenne.
 - Une chaudière bois de 1 MW doit produire au moins 3 000 MWh/an.
 - L'analyse croisée de la monotone et de cette valeur permet de dimensionner au mieux la puissance bois.

Exemple sur cas réels

Pulssance souscrite KW	Pulssance bols (KW)	170	taux de couverture bols	Nbre heures equivalent pleine puissance (bols) durant salson de chauffe	Production complémentaire possible par chaudière bois	
					en MWh/an	en % des ventes actuelles
1000	450	45%	93%	3300	90	8%
400	320	80%	83%	1200	736	210%
1865	900	48%	98%	2350	1035	64%
7400	3400	46%	52%	2100	4760	41%
1600	900	56%	71%	1250	2025	169%
1385	600	43%	96%	3400	60	4%

Autres optimisations

- Selon besoins estivaux, penser à installer deux chaudières bois, aux puissances étagées
 - Meilleur taux de couverture et fonctionnement dans les bonnes plages de puissance de chacune.
- Hydro accumulation, si la part de bâtiments scolaires, sportifs est non négligeables (ballon à ne lier qu'à la chaudière bois).
- Economiseur, condenseur ...

Un levier : la gestion du réseau

9

Dans 90% des cas visités :

- un écart départ retour au plus de 10°C,
- pas de pilotage réel de la température et/ou du débit du réseau, selon la puissance appelée, les besoins réels ...
- et donc des rendements réseaux médiocres : < 85 %.</p>

Les actions à engager

- Un fort besoin de formation du personnel en charge de l'exploitation des installations (au sein des collectivités ou des exploitants),
- une conception à améliorer, notamment sur le dimensionnement du réseau, de leur régulation ... : avoir l'obsession de la performance !!
- Proposer aux abonnés des interventions sur les secondaires, pour avoir des retours les plus bas
 - o sur Villard de Lans (2,5 MW bois, invest total de 4 M€HT), une enveloppe de 80 k€HT a été prévue sur ces travaux payés par la commune maître d'ouvrage : un condensuer a été installé sur la chaufferie bois !

Pour enclencher la démarche : des contrats performantiels !

10

- Sortir du « contrat P2 pas cher et minimaliste »
 - Pas cher mais rendement global (production + distribution) de 50 %!!
- Définir des indicateurs et objectifs de performance
 - pour les concepteurs et réalisateurs,
 - pour l'exploitant,
 - pour le fournisseur de combustible bois,

et donc les intégrer à leurs contrats!

Exemple d'indicateurs de performance

Famille et titre de l'indicateur de performance	Situation de référence	Objectif de performance
Indicateurs de qualité de service		
Respect du planning des études et travaux suite à signature		
du marché et levée des clauses résolutoires		
. délai de remise du dossier projet	3 mois	
. délai de démarrage effectif de la phase chantier	4 mois	
. délai pour réception finale de tous les ouvrages et vente	19 mois	410 mais
de chaleur à tous les abonnés	19 111018	< 19 mois
Respect du cadre fixé pour les études et travaux		
. non transmission des comptes rendus de chantier		
. non remise des dossiers attendus (plans, manuel		
d'exploitation, consignes de sécurité,)		
. non respect de la charte chantier propre		
Taux d'interruption local du service	0,25%	<0,5%
Nbre d'interruption du service, partiel ou total		
. comprises entre 4 et 8 h	0	<3
. comprises entre 8 et 12 h	0	<2
. comprises entre 12 et 24 h	0	<2
Nbre de réunion annuelle avec les abonnés	1	>1

Famille et titre de l'indicateur de performance	Situation de référence	Objectif de performance
Indicateurs de performance énergétique		
Rendement de production annuel moyen des chaudières		
. chaudière bois chaufferie centrale	80%	> 82%
. chaudière bois OPAC	80%	> 82%
. chaudières gaz appoint	90%	
Taux de couverture bois et autres EnR annuel moyen	87%	> 87%
Pour chaudières bois		
. minimum technique	25%	< 25%
. Taux de cendres (chaudières bois), mensuel et annuel	3%	< 3%
. Durée utilisation équivalent pleine puissance		
. pour chaudière bois chaufferie centrale	2800 h	> 3000 h
. pour chaudière bois OPAC	2300 h	> 2500 h
Rendement de distribution (réseau de chaleur)		
. annuel moyen	90%	> 90%
. mensuel mini	70%	> 70%
Consommation d'électricité par chaudières et pompes réseau, en Kwhélec/MWh livrés	30	< 30
Typologie et qualité du combustible bois		
. % de plaquettes forestières	50%	> 50%
. % de connexes de 1 ^{ère} transformation	40%	< 50%
. % de bois d'emballage non traités (et hors statut déchet)	10%	< 15%
. Taux d'humidité sur brut maxi	40%	< 40%
. Granulométrie maxi chaudière bois OPAC Volouise	63 mm	< 60 mm
. Granulométrie maxi chaudière centrale	125 mm	< 120 mm
. Taux de fines maxi	5%	< 5%

Famille et titre de l'indicateur de performance	Situation de référence	Objectif de performance
Indicateurs de performance environnementale		
Valeurs limites émissions chaudières bois (à 11% de O2)		
. Particules fines		
. Pour chaudière bois chaufferie centrale	20mg/Nm^3	< 20
. Pour chaudière bois OPAC Volouise	$150\mathrm{mg/Nm}^3$	< 130
. CO	$250\mathrm{mg/Nm}^3$	< 250
. COV	50 mg/Nm ³	< 50
. Nox	500 mg/Nm ³	< 500
SO2	200 mg/Nm ³	< 200
Valeurs limites émissions chaudières gaz (à 3% de O2)		
. CO	$100\mathrm{mg/Nm^3}$	< 100
. NoX	$100\mathrm{mg/Nm^3}$	< 100
. SO2	35 mg/Nm ³	< 35
. Poussières	5 mg/Nm ³	< 5
Taux de valorisation organique effective des cendres sous foyer des chaudières bois	80%	> 80%
Rayon moyen d'approvisionnement en combustible bois		
. Part dans rayon de 50 km	60%	> 75%
. Part dans rayon de 100 km	40%	< 25%

- Associer pénalités et intéressement aux objectifs de performance
- Mettre en place des contrats adaptés à cette dynamique de performance :
 - nécessité de limiter les intervenants multiples, situation courante mais ne permet aucun engagement de performance ... et donc aucune garantie pour le maitre d'ouvrage et les abonnés
 - Les « bons élèves » :
 - avec financement par le maitre d'ouvrage
 - conception réalisation,
 - conception réalisation exploitation maintenance
 - a minima : P2 + P3 avec objectifs et performance et pénalités/intéressement
 - l'intégration du P1 permet un réel engagement global
 - o contrats de délégation avec indicateurs précis, détaillés et objectifs ambitieux
 - et demande d'une note mensuelle sur les indicateurs et mesures préventives / correctives pour atteindre et dépasser les objectifs fixés

Un point essentiel : le suivi des indicateurs de performance

- O Au-delà de la mise en place des indicateurs et objectifs ... il faut les suivre !
- O C'est-à-dire que ce travail ait été prévu, planifié, organisé, avec un budget
 - soit en interne,
 - soit via un prestataire.
- Ce n'est quasiment le cas que sur des DSP
 - car les enjeux économiques sont lourds.
- Une nouvelle prestation ou service pour les petites installations à mettre en place
 - Cela gagnerait à figurer dans les cahiers des charges /exigences des financeurs;
 - le temps nécessaire est minime : entre 0,25 et 0,75 j par mois pour des petits/moyens projets (intégrant l'échange avec exploitant, fournisseur pour engager actions correctives);
 - et le gain économique est bien supérieur.
- O Un passage obligé pour entrer pleinement dans la performance des installations, nourrir le retour d'expérience, faire monter en compétence les acteurs de la filière !

Kalice bureau d'études et d'AMO

www.kalice-energieclimat.fr

19 rue du printemps

73100 Aix les bains

Tél: 06 89 14 62 32

eddie.chinal@be-kalice.fr

19 bis rue Madame Curie 44 400 Rezé

Tél: 06 52 90 72 14

gerald.bordier@be-kalice.fr

