

EVALUATION PROSPECTIVE 2020-2050 DE LA CONTRIBUTION DU SECTEUR BIOMASSE ENERGIE AUX EMISSIONS NATIONALES DE POLLUANTS ATMOSPHERIQUES

Synthèse

Novembre 2009

Etude réalisée pour le compte de l'ADEME par le CITEPA et Energies Demain (Contrat n°0801C0041)

Coordination technique : Erwan Autret, Service Bioressources - Direction Productions et Energies Durables - ADEME (Angers)

Remerciements: L'équipe de rédaction du rapport tient à remercier les membres du comité de pilotage de cette étude pour leur clairvoyance :

- Isabelle Derville, Direction générale de l'énergie et du climat (DGEC), Ministère de l'écologie, de l'énergie, du développement durable et de la mer (MEEDDM)
- Martine Leclercq, Direction générale de l'énergie et du climat (DGEC), Ministère de l'écologie, de l'énergie, du développement durable et de la mer (MEEDDM)
- Yann Ménager, Direction générale de l'énergie et du climat (DGEC), Ministère de l'écologie, de l'énergie, du développement durable et de la mer (MEEDDM)
- Jean-Louis Bal, ADEME
- Joëlle Colosio, ADEME
- Jean-Christophe Pouet, ADEME

Nous tenons également à adresser notre reconnaissance à l'ensemble des acteurs du secteur biomasse énergie qui ont accepté de répondre à nos sollicitations.

Toute représentation ou reproduction intégrale ou partielle faite sans le consentement de l'auteur ou de ses ayants droit ou ayants cause est illicite selon le Code de la propriété intellectuelle (art. L 122-4) et constitue une contrefaçon réprimée par le Code pénal. Seules sont autorisées (art. 122-5) les copies ou reproductions strictement réservées à l'usage privé de copiste et non destinées à une utilisation collective, ainsi que les analyses et courtes citations justifiées par la caractère critique, pédagogique ou d'information de l'œuvre à laquelle elles sont incorporées, sous réserve, toutefois, du respect des dispositions des articles L 122-10 à L 122-12 du même Code, relatives à la reproduction par reprographie.

L'ADEME en bref :

L'Agence de l'Environnement et de la Maîtrise de l'Energie (ADEME) est un établissement public sous la tutelle conjointe du ministère de l'Ecologie, du Développement et de l'Aménagement durables, et du ministère de l'Enseignement Supérieur et de la Recherche. Elle participe à la mise en oeuvre des politiques publiques dans les domaines de l'environnement, de l'énergie et du développement durable. L'agence met ses capacités d'expertise et de conseil à disposition des entreprises, des collectivités locales, des pouvoirs publics et du grand public et les aide à financer des projets dans cinq domaines (la gestion des déchets, la préservation des sols, l'efficacité énergétique et les énergies renouvelables, la qualité de l'air et la lutte contre le bruit) et à progresser dans leurs démarches de développement durable.

http://www.ademe.fr

ADEME 2/54

Sommaire

1	CON	NTEXTE ET OBJECTIF DE L'ETUDE	6
	1.1 1.2 1.3	BIOMASSE ENERGIE ET QUALITE DE L'AIR	10
2	APP	ROCHE ADOPTEE	12
	2.1 2.2	UN MODELE GLOBALLA NECESSITE DE TERRITORIALISER LES EMISSIONS	12
3	ETA	T DE REFERENCE 2005	14
	3.2 3.3 3.3. 3.3.2 3.3.3	Niveaux de détails atteints	14 15 18 18 20
	4.1 4.2 4.2. 4.2.2 4.3	DEFINITION DU MODELE PROSPECTIF	33 35 35 37 37
5	CON	ICLUSION	54

Glossaire

AASQA : Associations Agréées de Surveillance de la Qualité de l'Air **ADEME** : Agence de l'Environnement et de la Maîtrise de l'Énergie.

As: Arsenic

BaA: Benzo(a)anthracène
BahA: Benzo(a,h)anthracène
BaP: Benzo(a)pyrène
BbF: benzo(b)fluoranthère
BghiPe: Benzo(g,h,i)perylène
BkF: benzo(k)fluoranthère

Cd: Cadmium

CEE/NU: Commission Economique pour l'Europe des Nations Unies

CEREN : Centre d'Études et de Recherches Economiques sur l'Énergie, groupement d'intérêt économique créé par les opérateurs énergétiques nationaux et l'ADEME

CH4 Méthane

CITEPA: Centre Interprofessionnel Technique d'Études de la Pollution Atmosphérique

CO: Monoxyde de Carbone **CO2**: Dioxyde de Carbone

COV: Composés Organiques Volatils

COVNM: Composés Organiques Volatils Non Méthaniques

Cr : Chrome **Cu** : Cuivre

DGEC : Direction générale de l'énergie et du climat

EACEI: Enquête annuelle sur les consommations d'énergie dans l'industrie

EPA: Environmental Protection Agency

FluorA : Fluoranthène GES : gaz à effet de serre

H1, H2, H3: zones climatiques définissant des regroupements homogènes de températures au sein du territoire pour les deux premières réglementations thermiques. H1 représente 51 départements les plus froids, H2 36 départements et 9 pour H3 qui est la zone la plus chaude.

HAP: Hydrocarbures Aromatiques Polycycliques

Hq: Mercure

IndPy: indeno(1,2,3-cd)pyrène

INERIS: Institut National de l'Environnement Industriel et des Risques

Mg: millions de grammes, soit une tonne

MEEDDM : Ministère de l'Écologie, de l'Énergie, du Développement Durable et de la Mer

N2O: protoxyde d'azote

NAPFUE: Nomenclature for Air Pollution of FUEls

NCE : Nomenclature d'activités économiques pour l'étude des livraisons et Consommations d'Énergie. Nomenclature utilisée lors de l'Enquête annuelle sur les consommations d'énergie dans l'industrie.

Ni : Nickel Pb : Plomb

PCDD/F: Dioxine/Furanes (ou polychlorodibenzodioxines/furanes)

PM10 : Particules ayant un diamètre inférieur à 10 μ m **PM2,5** : Particules ayant un diamètre inférieur à 2,5 μ m **PM1,0** : Particules ayant un diamètre inférieur à 1,0 μ m **PPI** : Programmation Pluriannuelle des Investissements

SCR : réduction catalytique sélective (selective catalytic reduction)

Se: Selenium

SNCR: réduction non catalytique sélective (selective non calatytic reduction)

SO2: dioxyde de soufre

tep: tonne équivalent pétrole (1 tep = 11630 kWh)

TSP: Particules totales (*Total Suspended Particles*)

ZAS : Zones Administratives de Surveillance de la qualité de l'air

ZAS 1: Zone Administrative de Surveillance de plus de 250 000 habitants

ZAS 2 : Zone Administrative de Surveillance entre 50 000 et 250 000 habitants

ZAS 3 : Zone Administrative de Surveillance de moins de 50 000 habitants

ZAS 4 : Zone Administrative de Surveillance en Zone Industrielle : Le Havre, Port Jérôme et Fos sur Mer

Zn: Zinc

Résumé

Le développement des utilisations énergétiques de la biomasse est une des solutions à mettre en œuvre pour atteindre des objectifs fixés par les pouvoirs publics dans le cadre de la lutte contre le réchauffement climatique. La combustion de la biomasse a également un impact sur la pollution atmosphérique, qui doit être réduite conformément aux engagements nationaux d'amélioration de la qualité de l'air.

L'ADEME a confié à Energies Demain et au CITEPA la réalisation d'une étude prospective 2020-2050 afin d'évaluer les conditions techniques et économiques d'un développement maîtrisé de la biomasse énergie permettant de respecter conjointement les engagements pris pour atténuer le réchauffement climatique et améliorer la qualité de l'air.

L'étude prend en compte la dimension territoriale de la pollution atmosphérique grâce à une répartition locale des consommations d'énergie (gaz, fioul, biomasse, ...) destinées à la production de chaleur et d'électricité dans les secteurs résidentiel, tertiaire, industriel et chauffage urbain. Les émissions nationales sont caractérisées finement à partir des facteurs d'émission des différentes sources et tiennent compte de la mise en place éventuelle de traitements spécifiques tels que le dépoussiérage par filtre à manches, électrofiltre ou encore la réduction sélective des oxydes d'azote.

Les émissions prospectives de gaz à effet de serre (CO2, CH4, N2O), de composés organiques (CO, COVNM, PCDD/F, 8HAP), de particules (TSP, PM10, PM2,5, PM1,0), de NOx, de SO2 et de métaux (As, Cd, Cr, Cu, Hg, Ni, Pb, Se et Zn) sont quantifiés par secteur émetteur ainsi que par zone administrative de surveillance de la qualité de l'air. L'étude montre que le développement conjoint de la biomasse énergie et de la qualité de l'air est possible. Elle en précise les conditions techniques et économiques de mise en œuvre.

ADEME 5/54

1 Contexte et objectif de l'étude

1.1 Biomasse énergie et qualité de l'air

Comme toute combustion, celle du bois est émettrice de particules (TSP, PM10, PM2,5 et PM1,0), de NO_X, de CO, de COVNM mais aussi de HAP et de métaux lourds. Certains de ces polluants peuvent être émis en grande quantité dans la combustion du bois en foyers domestiques.

Certains de ces polluants sont des indicateurs de la qualité de la combustion. Si cette combustion n'est pas optimale, leurs émissions augmentent. Il s'agit de composés imbrûlés dont la formation est favorisée lorsque la combustion n'est pas complète.

Il est nécessaire que le bois soit brûlé dans de bonnes conditions pour limiter les émissions polluantes. Ces conditions particulières sont notamment les suivantes :

- La qualité du combustible : il est nécessaire d'utiliser un bois sec et non traité ;
- La technologie et le réglage de l'appareil de combustion : afin que la combustion soit la moins émettrice possible, il est nécessaire de respecter la règle des 4T:
 - Teneur en oxygène : Il est nécessaire d'apporter suffisamment d'oxygène dans les différentes zones de combustion ; de façon générale les émissions sont limitées quand une double entrée d'air est utilisée : l'air primaire est utilisé pour entretenir la pyrolyse du bois (gazéification) et oxyder le charbon et l'air secondaire est utilisé pour brûler l'ensemble des gaz produits par la pyrolyse.
 - Température : une température suffisamment haute doit être appliquée dans toutes les parties de la chambre de combustion afin de permettre une bonne combustion et d'éviter la présence de zones froides propices à la formation de composés imbrûlés de type CO, COV, TSP, etc.
 - Turbulence : un bon mélange entre l'air comburant et le combustible est recommandé pour assurer une bonne combustion. En effet, l'oxygène de l'air doit être en contact avec le combustible pour qu'il puisse y avoir combustion.
 - Temps de séjour : les gaz doivent rester au minimum une à deux secondes dans la chambre de combustion afin d'accroître les probabilités de rencontre entre le comburant et le combustible.

Lorsque la combustion de la biomasse ne respecte pas ces conditions, d'importantes quantités de composés imbrûlés sont émises.

Les technologies employées pour certains appareils domestiques (ex : les foyers ouverts) ne respectent pas parfaitement la règle des 4T et certains particuliers n'utilisent pas du bois de bonne qualité. Ceci peut expliquer les importantes émissions de composés imbrûlés relevées dans le secteur domestique présentées dans les tableaux suivants.

Les tableaux 1, 2 et 3 présentent l'historique des émissions depuis 1990 dues à la combustion du bois et des résidus de récolte dans le résidentiel tertiaire, le chauffage urbain et l'industrie.

Les émissions de polluants atmosphériques de la combustion du bois ont tendance à baisser. Cette tendance est due essentiellement à la mise sur le marché d'appareils domestiques performants qui présentent une meilleure combustion et une meilleure efficacité énergétique (avec notamment le respect de la règle des 4 T), d'où des émissions de composés imbrûlés plus faibles mais des émissions de NOx qui peuvent devenir plus importantes. La baisse des émissions de particules, due à la rénovation du parc, est mise en évidence dans la figure 1.

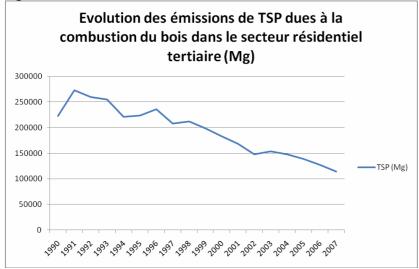
ADEME 6/54

Tableau 1 : Emissions dues à la combustion du bois et des résidus de récolte (NAPFUE 111 et 117) dans le résidentiel tertiaire (hors chauffage urbain)¹

Emission	ns dues à la co	embustion du bois et	des résidus de réc	olte (NA PFUE 111 e	t 117) dans le résid	entiel tertiaire (hors	chauffage urbain)
Polluant	Unité	1990	1995	2000	2005	2006	2007
CO2	Gg	33473	32850	30985	30016	29108	27827
CH4	Mg	177976	177181	141762	100461	90000	78916
N2O	Mg	1455	1428	1347	1305	1266	1210
GES	kt eq CO2/an	37662	37014	34379	32530	31390	29859
As	kg	3441	3380	2809	2149	1963	1769
BaA	kg	17600	15839	12451	9027	8353	7470
BaHA	kg	1015	913	718	520	481	431
BaP	kg	11005	9903	7785	5644	5222	4670
BbF	kg	12322	11088	8717	6320	5848	5229
BGHIPE	kg	3255	2929	2303	1669	1545	1381
BkF	kg	7537	6783	5332	3866	3577	3199
Cd	kg	507	498	414	317	289	261
CO	Mg	2441212	2408199	2075234	1706701	1593507	1461841
COVNM	Mg	537206	534717	428265	304175	272703	239306
Cr	kg	17025	16723	13898	10633	9711	8750
Cu	kg	11229	11030	9167	7013	6405	5771
FLUORA	kg	69917	62917	49461	35858	33180	29673
Hg	kg	290	285	237	181	165	149
INDPY	kg	6410	5768	4534	3287	3042	2720
Ni	kg	3985	3914	3253	2489	2273	2048
NOx	Mg	22383	21948	20842	20562	19955	19229
Pb	kg	32601	32022	26613	20362	18595	16755
PCDD-F	mg	35986	35356	29298	22210	20257	18168
Se	kg	2536	2491	2070	1584	1446	1303
SO2	Mg	7277	7141	6736	6525	6328	6049
TSP	Mg	222735	223740	183665	139027	127079	113978
Zn	kg	105046	103182	85752	65609	59918	53989

Tableau 2 : Emissions dues à la combustion du bois et des résidus de récolte (NAPFUE 111 et 117) dans le chauffage urbain²

Emissi		mbustion du	bois et des ré	sidus de récolte	(NAPFUE 111 e	t 117) dans le cha	auffage urbain
Polluant	Unité	1990	1995	2000	2005	2006	2007
CO2	Gg	17,1	61,8	49,3	121,4	196,5	197,5
CH4	Mg	0,6	2,2	1,7	4,2	6,8	6,9
N2O	Mg	0,7	2,7	2,1	5,3	8,5	8,6
GES	kt eq CO2/an	17,4	62,7	50,0	123,2	199,3	200,3
As	kg	1,8	6,4	5,1	12,5	20,3	20,4
BaA	kg	0,2	0,7	0,6	1,5	2,3	
BaHA	kg	0,0	0,1	0,1	0,1	0,2	0,2
BaP	kg	0,1	0,5	0,4	0,9	1,5	
BbF	kg	0,1	0,5	0,4	1,1	1,7	1,7
BGHIPE	kg	0,0	0,1	0,1	0,3	0,4	
BkF	kg	0,1	0,3	0,3	0,7	1,1	1,1
Cd	kg	0,3	0,9	0,7	1,8	3,0	3,0
CO	Mg	46,6		133,8	330,0		,
COVNM	Mg	0,9	3,2	2,6		10,3	
Cr	kg	8,8	31,6	25,2	62,0	100,4	100,9
Cu	kg	5,8		16,6	40,9	66,2	66,6
FLUORA	kg	0,8	2,9	2,3		9,2	9,2
Hg	kg	0,1	0,5	0,4	1,1	1,7	1,7
INDPY	kg	0,1	0,3	0,2	0,5	0,9	,
Ni	kg	2,0	7,4	5,9	14,5	23,5	23,6
NOx	Mg	37,3	131,4	90,4	220,0	386,6	371,6
Pb	kg	16,7643	60,5	48,2	118,8	192,2	193,2
PCDD-F	mg	7,5	26,9	21,4	52,8	85,4	85,9
Se	kg	1,3	4,7	3,7	9,2	15,0	15,0
SO2	Mg	3,7	14,1	8,7	21,0	45,9	38,0
TSP	Mg	18,6	64,7	40,0	64,7	142,1	140,1
Zn	kg	54,0	194,9	155,3	382,8	619,4	622,7


¹ Inventaire des émissions de polluants atmosphériques en France – SNIEPA 2009 - CITEPA

 $^{^{2}}$ Inventaire des émissions de polluants atmosphériques en France – SNIEPA 2009 - CITEPA

Tableau 3 : Emissions dues à la combustion du bois et des résidus de récolte (NAPFUE 111 et 117) sous chaudières dans l'industrie³

	ons dues à la	combustion du bo	is et des résidus	de récolte (NAPF	FUE 111 et 117) s	sous chaudières d	dans l'industrie
Polluant	Unité	1990	1995	2000	2005	2006	2007
CO2	Gg	3610	2041	2372	3651	3947	4229
CH4	Mg	126	71	83	127	137	147
N2O	Mg	157	89	103	159	172	184
GES	kt eq CO2/an	3661	2070	2406	3702	4003	4289
As	kg	373	211	245	377	408	437
BaA	kg	8	4	5	8	9	9
BaHA	kg	8	4	5	8	9	9
BaP	kg	20	11	13	20	21	23
BbF	kg	43	24	28	44	47	51
BGHIPE	kg	82	47	54	83	90	97
BkF	kg	12	7	8	12	13	14
Cd	kg	55	31	36	56	60	64
∞	Mg	25506	14417	16762	25792	27887	29878
COVNM	Mg	1884	1065	1238	1905	2059	2206
Cr	kg	1844	1042	1212	1865	2016	2160
Cu	kg	1216	688	799	1230	1330	1425
FLUORA	kg	119	68	79	123	133	142
Hg	kg	31	18	21	32	34	37
INDPY	kg	20	11	13	20	21	23
Ni	kg	432	244	284	436	472	506
NOx	Mg	5892	4216	4995	6756	7226	7747
Pb	kg	3532	1996	2321	3571	3861	4137
PCDD-F	mg	1570	887	1032	1587	1716	
Se	kg	275	155	181	278	300	_
SO2	Mg	589	870	1254	1397	1548	1327
TSP	Mg	3503	1760	2426	3215	3329	3431
Zn	kg	11380	6432	7478	11507	12442	13330

Figure 1 : Evolution des émissions de TSP dues à la combustion du bois dans le secteur résidentiel tertiaire

 $^{^3}$ Inventaire des émissions de polluants atmosphériques en France – SNIEPA 2009 - CITEPA

Le tableau 4 permet de relativiser l'importance de ces émissions en les comparant aux émissions totales nationales pour l'année 2005.

Tableau 4 : Part des émissions dues à la combustion de la biomasse bois sur les émissions totales en 2005⁴

Polluant Part des émissions dues à la combustion de la biomasse pois sur les émissions totales en 2005									
Part des émissions dues à la combustion de la biomasse sur les émissions totales en 2005									
Gaz à effet de serre (GES)									
4%									
1%									
2%									
Polluants atmosphériques									
2%									
22%									
31%									
25%									
7%									
30%									
5%									
2%									
2%									
20%									
13%									
33%									
12%									
77%									
12%									
23%									
34%									
59%									

^{*} Somme des 4 HAP tels que définis par la CEE-NU : benzo(a)pyrène (BaP), benzo(b)fluoranthère (BbF), benzo(k)fluoranthère (BkF), indeno(1,2,3-cd)pyrène

En termes de qualité de l'air ambiant, la part de la pollution atmosphérique imputable à la combustion du bois n'est pas facilement identifiable. En effet, il n'y a pas de traceurs spécifiques de la combustion du bois parmi les polluants « classiques » mesurés par les associations agréées de surveillance de la qualité de l'air (AASQA). Les particules ou les Hydrocarbures Aromatiques Polycycliques (HAP), présents dans les émissions de la combustion du bois, sont également émis par le trafic automobile et d'autres sources anthropiques. Peu d'études ont été menées à ce sujet. Toutefois, plusieurs travaux ont permis d'aboutir à des résultats intéressants :

- 1. Dans le cadre du programme POllution des Vallées Alpines (POVA⁵) : les travaux ont permis d'estimer que 10% à 30% des PM10 dans l'air ambiant seraient dues à la combustion du bois dans les vallées alpines ;
- 2. Concernant les HAP, une étude menée par l'INERIS⁶, a montré l'influence non négligeable du chauffage au bois sur les concentrations en HAP dans l'air ambiant ;
- 3. Une autre étude menée par l'INERIS avec différentes AASQA a permis de mesurer le levoglucosan, traceur de la combustion du bois, dans plusieurs agglomérations françaises et de mettre en évidence les plus impactées.

Les émissions de la combustion du bois ne peuvent pas être directement reliées aux concentrations de polluants mesurées dans l'air ambiant par les AASQA, étant donnée l'influence des conditions météorologiques et les nombreuses autres sources de polluants.

Signalons que les seuils de concentrations maximales de PM10 imposés par la réglementation qualité de l'air sont aujourd'hui dépassés sur de nombreux sites surveillés, comme le montre le tableau 5.

⁴ Inventaire des émissions de polluants atmosphériques en France – SNIEPA 2009 - CITEPA

⁵ Rapport final POVA, Fine et al. (2001) et Schauer et al. (2001)

⁶ Caractérisation des zones non couvertes par le programme pilote HAP : campagne hivernale en Isère – INERIS

⁶ Etude exploratoire sur la présence des traceurs spécifiques de la source « combustion du bois » dans les grandes agglomérations françaises – INERIS - 2007

Tableau 5 : Synthèse des dépassements des valeurs réglementaires des PM10 et PM2,5 dans les régions sensibles en 2007

Schisibles en 2	-007										
	Cor	ncentrations de	PM10	Concentrations de PM2,5							
	qualite (moyenne (Valeur limite (moyenne journalière)	Recommandations de l'OMS (moyenne annuelle)	Valeur cible en 2010 et limite en 2015 (moyenne annuelle)*	Valeur cible en 2010 et limite en 2015 (moyenne annuelle)**					
	30 μg/m³	40 μg/m³	50 μg/m³ avec 35 jours de dépassements	10 μg/m³	15 μg/m³	25 μg/m³					
Rhône-Alpes	Sites trafics et urbains	Sur 1 site "trafic"	Sites trafics, urbains et industriels	Sites trafics et urbains	Sites trafics et urbains	Sites trafics					
Alsace	Sites trafics et urbains		Sites trafics et urbains	Sites trafics et urbains***	Sites trafics***	***					
Nord-Pas-de- Calais	Tous types de sites										
Normandie	Sites trafics		Sites trafics	Sites urbains	Sites urbains						
Ile-de-France	Sites trafics et urbains	Sites trafics	Sites trafics et urbains	Sites trafics et urbains	Sites trafics et urbains	Sites trafics					

^{*} Valeur fixée dans le cadre du projet de loi du Grenelle de l'Environnement et reprise dans le plan particules

^{***} les mesures ne sont pas ajustées

Dépassements sur plusieurs sites de mesure du seuil
Dépassements sur 1 site de mesure du seuil
Pas de dépassement du seuil

1.2 Biomasse énergie et lutte contre le réchauffement climatique

L'utilisation du bois énergie en remplacement de combustibles fossiles permet de réduire les émissions de gaz à effet de serre et donc de lutter contre le changement climatique. En effet, en ce qui concerne la combustion de la biomasse, les émissions de CO2 ne sont pas comptabilisées dans les inventaires CCNUCC (Convention Cadre des Nations Unies pour le Changement Climatiques). Il est ainsi considéré que tout le CO2 émis par la combustion de la biomasse est absorbé par photosynthèse par de la biomasse. L'utilisation de la biomasse en remplacement de combustibles fossiles permet donc de lutter contre le changement climatique.

La biomasse est considérée comme une énergie renouvelable. C'est pourquoi de gros efforts de développement de cette énergie ont été prévus par le COMOP 10 (comité opérationnel n°10) du Grenelle de l'environnement et sont repris par la PPI chaleur. Ces objectifs sont donnés dans le tableau 6.

Lors du Grenelle de l'environnement, l'objectif de consommation de 20 Mtep d'énergie renouvelable en 2020 a été fixé. La majeure partie de l'augmentation de la production de chaleur à partir d'énergies renouvelables prévue par le Grenelle de l'environnement est supportée par la filière bois énergie (environ 62 % pour 2020).

ADEME 10/54

^{**} Directive 2008/50/CE du 28 mai 2008

Tableau 6 : Objectifs 2012-2020 définis en termes de consommation par le COMOP 10

		Horizo	n 2012	Horizon 2020				
Energie	Situation 2006	Objectif au 31/12/2012	Supplément à réaliser	Potentiel 2020	Supplément à réaliser			
Bois individuel	7400	7400	0	7400	0			
Bois individuel	(5,75 Mlogts)	(7,3 Mlogts)	(1,55 Mlogts)	(9 Mlogts)	(3,25 Mlogts)			
Biomasse	1 400	2 500	1 100	5 200	3 800			
dont bâtiments	100	300	200	800	700			
dont réseaux de chaleur collectif/tertiaire	100	300	200	1 200	1 100			
dont industrie/process	1 200	1 900	700	3 200	2 000			
Biomasse chaleur cogénération	0	540	540	2 400	2 400			
Géothermie profonde	130	195	65	500	370			
Géothermie intermédiaire	50	100	50	250	200			
Pompe à chaleur individuelle	200	1 200	1 000	1 600	1 400			
Fortipe a chaleur individuelle	(0,075 Mlogts)	(1,245 Mlogts)	1 000	(2,0 Mlogts)	1 400			
Solaire thermique individuel	17	150	133	817	800			
Solaire trieffiique individuel	(0,085 Mlogts)	(0,730 Mlogts)	(0,645 Mlogts)	(4,285 Mlogts)	(4,2 Mlogts)			
Solaire collectif	10	35	25	110	100			
Part ENR des UIOM et bois DIB	400	470	70	900	500			
Biogaz	55	60	5	555	500			
Total	9 662	12 650	2 988	19 732	10 070			

Mlogts: millions de logements

1.3 Objectif de l'étude

C'est dans le contexte du respect du double engagement d'amélioration de la qualité de l'air et de lutte contre le changement climatique que l'ADEME a confié à Energies Demain et au CITEPA la réalisation d'une étude prospective à l'horizon 2020-2050. Cette étude a pour but d'évaluer les conditions techniques et économiques d'un développement maîtrisé de la biomasse énergie permettant de respecter conjointement les engagements pris pour atténuer le réchauffement climatique et améliorer la qualité de l'air. Un modèle permettant d'estimer les futures émissions dues à la combustion et une méthode permettant d'interpréter les résultats de ce modèle en vue d'évaluer le respect de ce double objectif ont ainsi été développés.

L'étude prend en compte la dimension territoriale de la pollution atmosphérique grâce à une répartition géographique des consommations d'énergie (gaz naturel, fioul domestique, biomasse, ...) destinées à la production de chaleur et d'électricité dans les secteurs résidentiels, tertiaires, industriels et le chauffage urbain. Les émissions de polluants en métropole sont caractérisées à partir des facteurs d'émission des différentes sources et tiennent compte de la mise en place éventuelle de traitement spécifique tel que le dépoussiérage par filtre à manches ou électrofiltre et la réduction des NOx par réduction catalytique sélective (SCR) ou par réduction non catalytique sélective (SNCR).

Les émissions prospectives de gaz à effet de serre (CO2, CH4, N2O), de composés organiques (CO, COVNM, PCDD/F, HAP), de particules (TSP, PM10, PM2,5, PM1,0), de NOx, de SO2 et de métaux (As, Cd, Cr, Cu, Hg, Ni, Pb, Se et Zn) sont estimées par secteur émetteur ainsi que par zone administrative de surveillance de la qualité de l'air. L'étude a pour but d'examiner si le développement de la biomasse énergie (pour respecter les engagements Grenelle en matière de lutte contre l'effet de serre) et le respect de la qualité de l'air est possible. Elle en précise également les conditions techniques et économiques de mise en œuvre.

ADEME 11/54

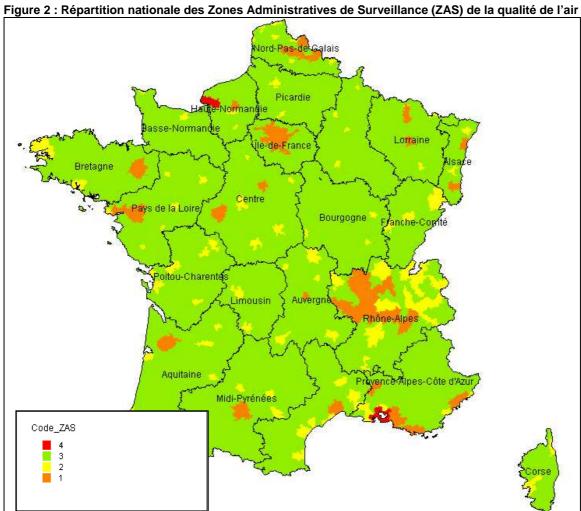
2 Approche adoptée

2.1 Un modèle global

L'option retenue pour répondre à la problématique posée a été la création d'un modèle dynamique en mesure d'évaluer les impacts en termes de consommations énergétiques, d'émissions de polluants atmosphériques et d'émissions de GES des différentes alternatives de développement de la biomasse énergie.

Ce modèle a été élaboré dans le souci de permettre la simulation, au pas de temps annuel, des émissions de GES et autres polluants atmosphériques liées à l'ensemble des consommations énergétiques et non pas exclusivement à celles des systèmes utilisant la biomasse énergie. Ce choix méthodologique s'explique par la nécessité de situer les émissions de polluants atmosphériques de ces systèmes par rapport au total de celles du périmètre étudié afin d'obtenir une évaluation pertinente des impacts liés au développement de la biomasse énergie. Il permet en effet, par exemple, de prendre en compte à la fois les émissions induites par l'utilisation de systèmes de chauffage à la biomasse mais également les émissions évitées (ou générées) par le remplacement d'autres systèmes de chauffage au profit de la biomasse énergie.

2.2 La nécessité de territorialiser les émissions


Contrairement au réchauffement climatique dont il est possible d'analyser les causes et conséquences à une échelle globale, la pollution atmosphérique est quant à elle une problématique essentiellement locale. Cette caractéristique du phénomène étudié a rendu nécessaire la reconstitution des consommations énergétiques et des émissions de polluants atmosphériques associées à une échelle territoriale fine.

Plus précisément, l'échelle de traitement définie par le comité de pilotage de l'étude est celle de la Zone Administrative de Surveillance de la qualité de l'air. Il s'agit de zones réglementaires établies par la directive européenne 2008/50/CE. Leur définition est principalement liée à la taille des agglomérations présentes sur le territoire considéré comme en témoigne le tableau 7 et la figure 2.

Tableau 7 : Zones Administratives de Surveillance (ZAS) de la qualité de l'air (source ADEME)

Code ZAS	Libellé	Population						
1	Zone Agglo	Plus de 250 000 habitants						
2	Zone Urbaine Régionale	Entre 50 000 et 250 000 habitants						
3	Zone Régionale	Moins de 50 000 habitants						
4	Zone Industrielle	Le Havre, Port Jérôme et Fos sur Mer						

ADEME 12/54

13/54 ADEME

3 Etat de référence 2005

La réalisation de l'état de référence pour l'année 2005 repose sur un modèle permettant de décrire finement les consommations d'énergie des secteurs résidentiel, tertiaire, industriel, chauffage urbain et production d'électricité ainsi que les émissions de gaz à effet de serre et de polluants atmosphérique associées. Le choix de l'année 2005 est justifié par la disponibilité de données suffisantes, permettant de bien caler le modèle avec un historique de données. Ce chapitre décrit les principales composantes du modèle et les résultats des consommations et de la qualité de l'air pour l'année 2005. Cet état de référence servira ensuite de point de départ aux simulations prospectives 2020-2050 (chapitre 4).

3.1 Reconstitution des consommations énergétiques

3.1.1 Secteurs étudiés

Les secteurs dont les consommations d'énergie ont été reconstituées dans le cadre de l'élaboration de l'état de référence sont les suivants :

- Résidentiel: le périmètre considéré comprend à la fois le secteur domestique et les chaufferies collectives au bois destinés à l'usage résidentiel. Il concerne uniquement les consommations énergétiques liées au chauffage des résidences principales (les résidences secondaires sont hors périmètre de l'étude);
- Tertiaire : le périmètre considéré concerne les consommations d'énergie liées au chauffage du secteur tertiaire ;
- Industrie : le périmètre considéré concerne les consommations de combustibles du secteur industriel ;
- Chauffage urbain : le périmètre considéré concerne les consommations d'énergie des unités de production de chauffage urbain ;
- Production électrique⁷: le périmètre considéré concerne les consommations d'énergie des unités de production d'électricité.

Afin d'éviter les doubles comptes, une attention toute particulière a été accordée à la définition des périmètres des secteurs utilisés pour la constitution de l'état de référence notamment concernant l'affectation sectorielle des chaufferies dites collectives.

La définition des périmètres a été réalisée dans le souci d'imputer à chacun de ces secteurs uniquement ses émissions directes. Par exemple, bien que les consommations de chauffage des résidences principales reliées à un réseau de chaleur urbain soient liées à une demande du secteur résidentiel, les émissions induites par les consommations d'énergie nécessaires à la production de chaleur correspondante sont comptabilisées dans le périmètre du chauffage urbain et non pas celui du résidentiel.

3.1.2 Niveaux de détails atteints

Dans un souci d'identification des enjeux majeurs et des leviers d'actions associés, la structure des consommations énergétiques et des émissions de polluants atmosphériques associées a été décrite de manière fine selon le jeu de déterminants considéré comme le plus approprié. Les méthodologies adoptées et les niveaux de détails atteints pour la définition des consommations énergétiques ont été conditionnés par les données disponibles. Le tableau 8 fait état de l'échelle territoriale de description atteinte, des sources de données utilisées et des discriminants de consommations disponibles pour chacun des secteurs étudiés.

La reconstitution des consommations énergétiques a été réalisée à l'échelle de la commune pour les secteurs résidentiel, tertiaire et chauffage urbain, afin de permettre une agrégation des résultats à l'échelle de la ZAS⁸. Par manque de données disponibles, ce niveau de détails n'a pas pu être obtenu pour les secteurs de l'industrie et de la production électrique.

⁷ Ce secteur n'ayant pas fait l'objet d'une simulation prospective, les données de l'état de référence concernant ce secteur ne sont pas présentées dans cette synthèse. Le lecteur est invité à se référer au rapport de l'étude pour plus d'informations sur le sujet.

⁸ Voir 2.2 la nécessité de territorialiser les émissions.

Tableau 8 : Niveaux de détails atteints pour la constitution de l'état de référence

Tableau 8 : Niveaux de détails atteints pour la constitution de l'état de référence									
Echelle territoriale de description	Secteur	Données utilisées	Discriminants disponibles						
			Type de logement (Maison, Appartement)						
		ENERTER Résidentiel, Bilan	Période de construction des logements (Avant 1949, 1949-1975, 1976-1989, 1990-2005)						
	Résidentiel domestique	national du bois de chauffage (CEREN, 2006) et Bilans régionaux du bois de	Energie de chauffage principale du logement (Chauffage urbain, Gaz naturel, Fioul, Electricité - Effet Joule, GPL, Charbon, Bois, Electricité - PAC)						
		chauffage (CEREN, 2006)	Energie de chauffage secondaire du logement (Chauffage urbain, Gaz naturel, Fioul, Electricité - Effet Joule, GPL, Charbon, Bois, Electricité - PAC)						
			Usage du bois dans le logement (Base seule, Base associée, Appoint régulier, Appoint exceptionnel)						
	Résidentiel collectif	ENERTER Résidentiel, Base de données de subvention de l'ADEME ⁽¹⁾	Type de système de chauffage au bois utilisé (Individuel : Chaudié Cuisinière, Poêle, Foyer fermé, Foyer ouvert, Cogénération – Collectif : Chaudière, Cogénération)						
Commune			Type de combustible bois utilisé (Bûches, Granulés, Plaquettes, Biomasse agricole)						
	Tertiaire		Branche (Administration, Bureaux, Cafés-Hôtels-Restaurants, Commerce, Enseignement, Habitat communautaire, Santé, Sports Loisirs Culture, Transports)						
		ENERTER Tertiaire, Base de données de subvention de	Energie de chauffage (Chauffage urbain, Gaz, Fioul, Electricité - Eff Joule, Electricité - PAC, Bois, Autres)						
		l'ADEME	Type de système de chauffage au bois utilisé (Chaudière, Cogénération)						
			Type de combustible bois utilisé (Bûches, Granulés, Céréales, Biomasse agricole)						
	Chauffage urbain	Enquête SNCU ⁽ⁱⁱ⁾ , Données CIBE ⁽ⁱⁱⁱ⁾ , ViaSeva, ENERTER Résidentiel, ENERTER Tertiaire, Base de données de subventions de l'ADEME	Energie (UIOM, Gaz, Fioul, Géothermie, Charbon, Bois, Autres)						
		Enquête EACEI ^(iv) , Base	Nomenclature d'activités économiques pour l'étude des livraisons et consommations d'énergie (NCE)						
Région	Industrie	SIRENE	Energie (Autres produits pétroliers, Fioul, Gaz, GPL, Houille - Lignite - charbon pauvre - Coke de houille, Bois et sous-produits du bois, Liqueurs noires, Autres)						
France	Production électrique	Données SceGES ^(vi)	Energie (Hydraulique, Eolien, Autres ENR, Nucléaire, Gaz, Charbon, Fioul)						

⁽i) La base de données utilisée répertorie les subventions attribuées par l'ADEME pour l'installation de chaufferies au bois. Elle inclut entres autres la puissance de l'installation, sa consommation de bois et le secteur de destination de la chaleur. Une consolidation des données issues de cette base a été réalisée dans le cadre de cette étude.

- (ii) Syndicat National du Chauffage Urbain et de la climatisation urbaine (SNCU)
- (iii) Comité Interprofessionnel du Bois Energie (CIBE)
- (iv) Enquête annuelle sur les consommations d'énergie dans l'industrie (EACEI)
- (v) Système d'Identification du Répertoire des ENtreprises et de leurs Etablissements (SIRENE)
- (vi) SceGES est un outil de scénarisation prospective développé notamment par l'Ecole des Mines de Paris, le CITEPA et Energies Demain pour le compte de la Direction Générale de l'Énergie et du Climat.

3.2 Mise à jour des facteurs d'émissions

La traduction en émissions de GES et de polluants atmosphériques des consommations énergétiques reconstituées au travers des bilans réalisés a nécessité l'emploi de facteurs d'émissions distincts selon l'énergie utilisée et le secteur considéré. Dans le cadre de cette étude, le CITEPA a entrepris conjointement avec le Ministère de l'Ecologie, de l'Énergie, du Développement durable et de la Mer (MEEDDM) une mise à jour des facteurs d'émissions des systèmes de chauffage utilisateurs de biomasse énergie. Pour le secteur résidentiel, cette mise à jour des facteurs d'émissions a été complétée par un travail de reconstitution de la pyramide des âges des systèmes de chauffage au bois.

Actuellement, en ce qui concerne le chauffage domestique au bois, les facteurs d'émissions utilisés par le CITEPA dans les inventaires d'émissions nationaux sont différenciés suivant 4 groupes d'équipements : les foyers ouverts, les foyers fermés et inserts, les poêles et cuisinières, et enfin les chaudières. A l'exception des foyers ouverts, ces groupes sont eux-mêmes divisés en 3 catégories :

- 1. Appareils anciens désignant les appareils vendus avant 1996,
- 2. Appareils récents désignant la majorité des appareils vendus entre 1996 et 2005,
- 3. Appareils performants.

Les facteurs d'émissions employés pour la combustion du bois dans le secteur domestique sont issus de divers travaux menés (études du CITEPA, de l'INERIS, de l'EPA, etc.) et des discussions menées avec

Erdyn lors de la réalisation par ce cabinet de la précédente étude biomasse prospective pour l'ADEME.

En ce qui concerne la combustion du bois dans le secteur collectif et industriel, les facteurs d'émission utilisés actuellement pour les inventaires nationaux d'émissions de polluants atmosphériques proviennent de résultats de différentes mesures effectuées sur une cinquantaine de chaudières. En ce qui concerne les grandes installations de combustion (de puissance thermique supérieure à 50 MW), les émissions sont basées sur les inventaires des Grandes Installations de Combustion.

Lors de cette étude, les facteurs d'émission utilisés par le CITEPA pour la combustion du bois ont été comparés aux données de la littérature la plus récente. Cette comparaison a permis de confirmer que la quasi totalité des facteurs d'émissions utilisés dans le cadre des inventaires d'émissions nationaux par le CITEPA sont globalement cohérents avec les données de la littérature. Cependant, en ce qui concerne le facteur d'émission employé pour le SO2, à savoir 20 g/GJ pour toutes les installations de combustion du bois, celui-ci semble relativement élevé face aux valeurs mesurées par l'ADEME lors de récentes campagnes de mesures (valeurs très inférieures à 10 g/GJ). C'est pourquoi il a été convenu d'abaisser le facteur d'émission du SO2 à 10 g/GJ pour toutes les installations de combustion du bois. En effet, les émissions de SO2 ne dépendant que de la quantité de soufre présent dans le bois et non des conditions de combustion, le facteur d'émission du SO2 est identique quelque soit l'installation.

D'autre part, la valeur du facteur d'émissions des TSP utilisée dans l'inventaire national des émissions pour l'ensemble des chaufferies biomasse (< 50MW) est de 100 g/GJ. Ce facteur d'émissions correspond à une moyenne de facteurs d'émissions de chaufferies bois équipées de différents systèmes de traitement des poussières, à savoir principalement des cyclones ou multicyclones et occasionnellement des filtres à manche et des électrofiltres. Si cette valeur représente relativement bien les émissions du parc actuel, elle n'est absolument pas représentative des performances des chaufferies aujourd'hui mises en fonctionnement (10 g/GJ en moyenne). Ce résultat provenant de mesures réalisées pour la plupart sur des installations relativement récentes et ayant de bonnes performances, et afin de prendre en compte dans l'étude prospective les émissions d'installations qui pourraient avoir des performances sensiblement plus basses, il a été considéré que le facteur d'émissions de TSP à appliquer à toutes les nouvelles installations (création ou remplacement d'une chaufferie existante) est celui correspondant à la valeur limite d'émission de référence de 30 mg/Nm3 en 2010, soit 17 g/GJ.

Pour information, les facteurs d'émission utilisés pour les autres combustibles ont été pris égaux à ceux utilisés dans les inventaires nationaux d'émissions de polluants atmosphériques.

Les tableaux suivants présentent les facteurs d'émission employés. Il est à noter que les émissions de CO2 dues à la combustion de la biomasse ne sont pas prises en compte pour les raisons citées précédemment, d'où un facteur d'émission pris égal à 0 kg/GJ. Pour information, si ces émissions étaient prises en compte, le facteur d'émission employé serait de 92 kg/GJ.

ADEME 16/54

Tableau 9 : Résidentiel : Facteurs d'émissions des systèmes domestiques de chauffage au bois utilisés dans cette étude

cette	cette étude																														
	royers	585	0	4	10	90	1700	7 000	9'8	1,4	47	31	8'0	11	90	2	290	100	284	24,2	27,1	16,6	14,1	7,2	38,7	2,2	153,9	750	712,5	697,5	069
	Performant	88	0	4	10	90	250	2 500	1,9	6,0	9,4	6,2	0,2	2,2	18	1,4	58	20	44,8	3,8	4,3	2,6	2,2	1,1	6,1	0,4	24,3	140	133	130,2	128,8
nserts	Après 1996	130	0	4	10	9	400	4 000	3,8	5'0	17,5	11,5	6,0	4,1	33,4	2,6	107,7	37,1	83,2	7,1	7,9	4,9	4,1	2,1	11,3	2'0	45,1	260	247	241,8	239,2
	Avant 1996	530	0	4	10	9	1600	7 000	9,5	1,4	47	31	8'0	11	90	7	290	100	224	19,1	21,4	13,1	11,1	5,6	30,5	1,8	121,3	700	999	651	644
	Performant	8	0	4	10	9	250	2 500	1,9	6,0	9,4	6,2	0,2	2,2	18	1,4	58	20	120,4	10,3	11,5	7	9	3	16,4	6'0	65,2	140	133	130,2	128,8
Cuicinièrec	Après 1996	130	0	4	10	90	400	4 000	3,8	5'0	17,5	11,5	6,0	4,1	33,4	2,6	107,7	37,1	223,6	19,1	21,3	13,1	11,1	9'9	30,5	1,8	121,1	260	247	241,8	239,2
	Avant 1996	530	0	4	10	99	1600	7 000	9,5	1,4	47	31	8'0	11	96	7	290	100	602	51,3	57,5	35,2	29,9	15,2	82,1	4,7	326,1	700	999	651	644
	Performant	8	0	4	10	90	250	2 500	1,9	6,0	9,4	6,2	0,2	2,2	18	1,4	58	20	120,4	10,3	11,5	7	9	3	16,4	6'0	65,2	140	133	130,2	128,8
Poéles	Après 1996	130	0	4	10	90	400	4 000	3,8	5'0	17,5	11,5	6,0	4,1	33,4	2,6	7,701	37,1	223,6	19,1	21,3	13,1	11,1	9'5	30,5	1,8	121,1	260	247	241,8	239,2
	Avant 1996	530	0	4	10	9	1600	7 000	9,5	1,4	47	31	8'0	11	90	7	290	100	602	51,3	57,5	35,2	29,9	15,2	82,1	4,7	326,1	700	999	651	644
	Performant	17	0	4	10	90	50	1 000	1,9	6,0	9,4	6,2	0,2	2,2	18	1,4	58	20	11	6'0	1,1	9'0	9'0	6,0	1,5	0,1	9	50	47,5	46,5	46
Chandières	Après 1996	91	0	4	10	09	300	3 200	3,8	9'0	18,8	12,4	6,0	4,4	36	2,8	116	40	22	1,9	2,1	1,3	1,1	9'0	3	0,2	11,9	100	95	93	92
	Avant 1996	330	0	4	10	09	1000	9 000	9,5	1,4	47	31	8'0	11	96	7	290	100	55	4,7	5,3	3,2	2,7	1,4	7,5	0,4	29,8	250	237,5	232,5	230
Facteurs d'émission	en energie entrante	CH4 (g/GJ)	CO2 (kg/GJ)	N20 (g/GJ)	S02 (g/GJ)	NOx (g/GJ)	VNM (g eq C₃H⊌	CO (g/GJ)	As (mg/GJ)	Cd (mg/GJ)	Cr (mg/GJ)	Cu (mg/GJ)	Hg (mg/GJ)	Ni (mg/GJ)	Pb (mg/GJ)	Se (mg/GJ)	Zn (mg/GJ)	PCDD-F (ng i- TEQ/GJ)	8 HAP (mg/GJ)	BaP (mg/GJ)	BbF (mg/GJ)	BkF (mg/GJ)	IndPy (mg/GJ)	BghiPe (mg/GJ)	BaA (mg/GJ)	BahA (mg/GJ)	FluorA (mg/GJ)	TSP (g/GJ)	PM10 (g/GJ)	PM2,5 (g/GJ)	PM1,0 (g/GJ)

ADEME 17/54

Tableau 10 : Résidentiel : Facteurs d'émissions des systèmes collectifs de chauffage au bois utilisés dans cette étude

etuue		
Polluant atmosphérique	Unité	2005
CH4	g/GJ	3,2
CO2	kg/GJ	0
N2O	g/GJ	4
SO2	g/GJ	10
NOx	g/GJ	200
COVNM	g eq C3H8/GJ	4,8
CO	g/GJ	250
As	mg/GJ	9,5
Cd	mg/GJ	1,4
Cr	mg/GJ	47
Cu	mg/GJ	31
Hg	mg/GJ	0,8
Ni	mg/GJ	11
Pb	mg/GJ	90
Se	mg/GJ	7
Zn	mg/GJ	290
PCDD-F	ng i-TEQ/GJ	40
8 HAP	mg/GJ	8,1
BaP	mg/GJ	0,7
BbF	mg/GJ	0,8
BkF	mg/GJ	0,5
IndPy	mg/GJ	0,4
BghiPe	mg/GJ	0,2
BaA	mg/GJ	1,1
BahA	mg/GJ	0,1
FluorA	mg/GJ	4,3
TSP	g/GJ	100 (17*)
PM10	g/GJ	79,8
PM2,5	g/GJ	66,5
PM1,0	g/GJ	55

^{*}pour les nouvelles chaufferies à partir de 2010

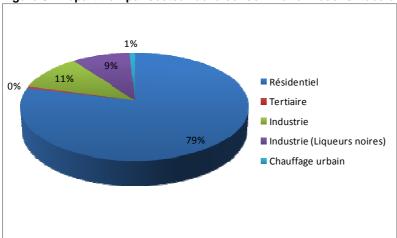
3.3 Résultats obtenus pour l'année 2005

Les données disponibles pour la réalisation de cet état de référence nous ont conduits à choisir l'année 2005 comme point de départ des simulations prospectives réalisées par la suite.

3.3.1 Consommations d'énergie en 2005

Les consommations de biomasse énergie (liqueurs noires comprises⁹) telles qu'elles ont été reconstituées pour les périmètres sectoriels étudiés¹⁰ s'élèvent à près de 7 715 ktep (voir tableau 11 et figure 3).

Les 6 087 ktep de bois consommées dans le secteur résidentiel représentent près de 79% des consommations de biomasse énergie, liqueurs noires incluses, et 87 % sans prise en compte de ces dernières. Ce secteur est d'ailleurs le seul où l'on peut considérer la part du bois comme significative par rapport à la consommation totale du secteur considéré. A noter en outre que les consommations de biomasse énergie du secteur tertiaire sont tout à fait négligeables par rapport aux consommations de l'ensemble de ce secteur.


Tableau 11 : Consommation reconstituée de biomasse énergie par secteur en 2005

Secteur	Consommations de biomasse (ktep)	Part de la consommation totale	Part de la consommation totale (hors liqueurs noires)
Résidentiel	6 087	79%	87%
Tertiaire	39	1%	1%
Industrie	816	11%	12%
Industrie (Liqueurs noires)	714	9%	0%
Chauffage urbain	58	1%	1%
Total	7 715	100%	100%

⁹ Les liqueurs noires sont des combustibles issus de la fabrication de pâte à papier notamment. Elles sont parfois comptabilisées comme de la biomasse énergie dans les bilans énergétiques.

¹⁰ Les consommations énergétiques reconstituées sont celles liées au chauffage des parcs bâtis résidentiel et tertiaire, à la production de chaleur des chaufferies urbaines ainsi que les consommations de combustibles du secteur industriel.

Figure 3 : Répartition par secteur de la consommation reconstituée de biomasse énergie en 2005

En termes de répartition géographique (voir tableau 12 et figure 4), on constate que les régions Aquitaine et Rhône-Alpes sont les plus consommatrices de biomasse énergie. Leurs consommations représentent respectivement l'équivalent de 862 ktep et 663 ktep. Plus de 30 % des consommations totales de biomasse énergie sont centralisés dans quatre régions (Aquitaine, Rhône-Alpes, Midi-Pyrénées, Provence-Alpes-Côte d'Azur). Ce constat peut s'expliquer d'une part par l'importante disponibilité de ressources bois dans ces régions ainsi que par un développement de la filière bois plus avancé par rapport au reste du territoire.

Tableau 12 : Consommations de biomasse énergie par secteur et par région en 2005 (en ktep)

Tubicau 12 : Consommation		J. J	Industrie -		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Région	Résidentiel	Industrie	Liqueurs noires	Chauffage urbain	Tertiaire	Total
Aquitaine	414	174	271	2	3	863
Rhône-Alpes	587	59	0	25	5	671
Midi-Pyrénées	380	49	120	1	2	552
Provence-Alpes-Côte d'Azur	289	22	110	0	1	422
Limousin	186	52	150	5	3	396
Lorraine	304	55	0	1	1	362
Champagne-Ardenne	272	72	0	10	3	355
Haute-Normandie	203	116	30	1	2	351
Bretagne	310	4	33	0	3	351
Centre	322	14	0	2	0	338
Poitou-Charentes	271	45	0	8	3	325
Franche-Comté	277	19	0	7	4	306
Pays de la Loire	274	28	0	1	1	304
Ile-de-France	277	12	0	1	0	289
Auvergne	276	7	0	4	2	288
Bourgogne	275	0	0	3	2	279
Nord-Pas-de-Calais	251	12	0	1	0	264
Basse-Normandie	228	19	0	4	2	252
Picardie	245	2	0	0	0	246
Languedoc-Roussillon	187	27	0	2	3	218
Alsace	183	28	0	1	1	213
Corse	78			1	0	79
France entière	6 087	816	714	58	39	7 715

ADEME 19/54

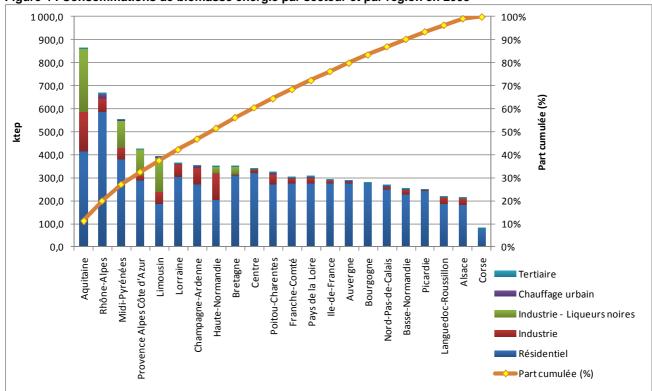


Figure 4 : Consommations de biomasse énergie par secteur et par région en 2005

3.3.2 Emissions de polluants atmosphériques en 2005

Les résultats affichés dans le présent chapitre sont issus du modèle développé spécifiquement dans le cadre de l'étude. Les écarts observés avec les données présentées au chapitre 1.1 s'expliquent notamment par la mise à jour des facteurs d'émissions effectuée et par l'utilisation de méthodologies de reconstitution des consommations différentes.

Le tableau 13 présente, pour l'état de référence 2005, les émissions de gaz à effet de serre et de polluants atmosphériques liées à la combustion du bois et des sous-produits du bois, à la combustion de liqueurs noires, le total qui en résulte, ainsi que les émissions totales toutes énergies (avec et sans production électrique) de l'ensemble du périmètre étudié.

Sur l'ensemble du périmètre étudié (production tout type d'énergie dans les secteurs résidentiel, tertiaire, industrie et chauffage urbain), le bois est responsable de la quasi-totalité des émissions de HAP et de COVNM ainsi que de plus de deux-tiers des émissions de particules (TSP). Cette part de responsabilité de la biomasse énergie est d'autant plus importante que le diamètre de ces particules diminue. On passe en effet de 72% pour les PM10 à 83% pour les PM1,0. La part de la biomasse énergie dans les émissions de certains métaux est non négligeable, puisqu'elle dépasse 70% pour le plomb (Pb) et le zinc (Zn). Le bois est également responsable de près de 60% des dioxines et furanes (PCDD-F) émises. Ces résultats viennent confirmer le fait que le bois représente une source d'émissions non négligeable, pour quelques polluants ciblés, par rapport à l'ensemble des modes de production d'énergie. Ces résultats sont aussi à nuancer compte tenu de leur poids variable dans le total des émissions nationales (voir tableau 4)

L'analyse par secteur (voir tableau 14 et figure 5) met en évidence le rôle prépondérant du secteur résidentiel, et, dans une moindre mesure, de l'industrie, dans les émissions de polluants induites par le bois et les sous-produits du bois. Si la répartition observée est globalement le reflet de la distribution sectorielle des consommations, on observe quelques disparités liées essentiellement aux différences entre les facteurs d'émissions utilisés pour chacun des secteurs. Les consommations de bois du secteur résidentiel sont par exemple responsables de près de 67% des émissions de NOx induites par les consommations de bois et sous-produits du bois de l'ensemble des secteurs étudiés alors que cette part est de 97% pour les TSP.

Tableau 13 : Emissions directes de GES et de polluants atmosphériques pour l'état de référence 2005, des secteurs combustion du bois et des sous-produits du bois, combustion de liqueurs noires, total biomasse

énergie, toutes énergies 11 avec et sans production électrique

energie,	toutes énergies	s <u>"</u> avec et s	ans product	ion electriqu	ie			
Polluant	Unité	Emissions liées à la combustion de bois et sous- produits du bois	Emissions liées à la combustion de liqueurs noires	Emissions totales de la biomasse énergie	Emissions totales toutes énergies (hors production électrique)	Part de la biomasse énergies dans les émissions totales toutes énergies (hors production électrique)	Emissions totales toutes énergies, production électrique comprise	Part de la biomasse énergie dans les émissions totales toutes énergies, production électrique incluse
			Gaz	à Effet de Ser	re (GES)			
CH4	t/an	74 840	149	74 989	89 609	84%	89 847	83%
CO2	kt/an	0	3 136	3 136	180 398	2%	214 609	1%
N2O	t/an	1 171	75	1 246	7 331	17%	8 907	14%
Total GES	kt eq CO2/an	1 935	3 162	5 097	184 552	3%	220 577	2%
			Poll	uants atmosp	hériques			
SO2	t/an	2 928	7 807	10 735	309 421	3%	418 937	3%
NOx	t/an	22 952	2 437	25 389	221 863	11%	319 511	8%
COVNM	t eq C3H8/an	226 651	149	226 801	238 437	95%	239 824	95%
СО	t/an	1 329 088	448	1 329 536	1 458 867	91%	1 465 156	91%
As	kg/an	1 952	0	1 952	3 474	56%	4 418	44%
Cd	kg/an	288	0	288	662	43%	771	37%
Cr	kg/an	9 656	0	9 656	13 214	73%	15 175	64%
Cu	kg/an	6 369	0	6 369	9 178	69%	11 124	57%
Hg	kg/an	164	0	164	4 594	4%	7 663	2%
Ni	kg/an	2 260	0	2 260	85 028	3%	126 306	2%
Pb	kg/an	18 490	0	18 490	21 774	85%	22 985	80%
Se	kg/an	1 438	0	1 438	2 104	68%	2 487	58%
Zn	kg/an	59 580	0	59 580	71 566	83%	77 905	76%
PCDD-F	mg i-TEQ/an	18 210	0	18 210	47 858	38%	48 988	37%
8 HAP	kg/an	48 901	0	48 901	49 500	99%	49 514	99%
BaP	kg/an	4 170	0	4 170	4 189	100%	4 190	100%
BbF	kg/an	4 670	0	4 670	4 865	96%	4 866	96%
BkF	kg/an	2 857	0	2 857	3 040	94%	3 043	94%
IndPy	kg/an	2 429	0	2 429	2 439	100%	2 440	100%
BghiPe	kg/an	1 233	0	1 233	1 244	99%	1 244	99%
BaA	kg/an	6 669	0	6 669	6 688	100%	6 689	100%
BahA	kg/an	386	0	386	396	97%	396	97%
FluorA	kg/an	26 488	0	26 488	26 638	99%	26 644	99%
TSP	t/an	108 256	0	108 256	154 987	70%	162 635	67%
PM10	t/an	102 274	0	102 274	135 638	75%	141 985	72%
PM2,5	t/an	99 687	0	99 687	122 757	81%	126 159	79%
PM1,0	t/an	98 211	0	98 211	115 939	85%	117 640	83%

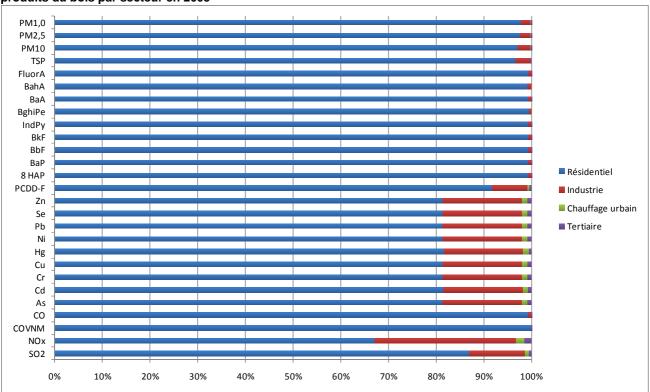

¹¹ Les émissions toutes énergies correspondent uniquement au total des émissions des secteurs étudiés. Les émissions de plluants atmosphériques liées au transport ou à l'agriculture ne sont ici pas prises en compte.

Tableau 14 : Emissions directes de GES et de polluants atmosphériques par secteur en 2005

Tal	ble	eau	ı 1	4 :	E	_	SS	io				te	s (de	GI				e p	ol	ua	nt	s a	ıtn	10	sp	hé	riq	ue	S	oa	r s	ec	teι	ır e
du bois		Total général		84%	%0	16%	1%		1%	10%			%99	43%	73%	%69	%\$	3%	85%	%89	83%	38%	%66	100%	%96	94%	100%	%66	100%	%26	%66	%02	%62	81%	85%
sous-produits	nergies	Industrie		1%	0%	4%	%0		%0	%9	2%	10%	22%	24%	40%	31%	1%	1%	%99	32%	%95	%09	84%	78%	%98	%06	%69	54%	%58	37%	%06	%6	11%	16%	20%
es au bois et s	dans l'ensemble des énergies	Chauffage urb Industrie		3%	0%	3%	%0		%0	3%	3%	14%	9%	2%	11%	27%	%0	%0	12%	16%	17%	1%	46%	25%	11%	77%	82%	81%	94%	82%	94%	17%	18%	21%	25%
Part des émissions dues au bois et sous-produits du bois	dans Per	Tertiaire		1%	%0	1%	%0		%0	1%	1%	7%	23%	14%	44%	41%	%5	%0	28%	20%	62%	%02	10%	40%	3%	2%	40%	23%	38%	14%	19%	8%	8%	15%	16%
Part des				93%	%0	31%	3%		4%	24%	%66	92%	32%	%86	%86	%26	29%	%68	%66	%66	%66	%09	%66	100%	%26	32%	100%	100%	100%	%66	100%	91%	91%	%06	91%
	is	Total général Résidentiel		74840	0	1111	1 935		2 928	22 952	226 651	1 329 088	1 952	288	9696	6 369	164	2 260	18 490	1 438	59 580	18 210	48901	4170	4670	2 857	2 429	1 233	6999	386	26 488	108 256	102 274	99 687	98 211
	Emissions liées au bois et sous-produits du bois			109	0	137	45		341	6829	164	8 536	324	48	1 605	1 058	27	376	3 073	239	9 902	1 366	277	24	27	17	14	4	38	3	147	3 4 1 4	2 7 2 5	2 271	1 878
	ı bois et sous-	Chauffage urb Industrie	Serre (GES)	8	0	10	3	osphériques	24	402	12	602	23	3	113	52	2	26	217	17	869	96	20	2	2	1	1	0	3	0	10	118	86	98	74
	issions liées a	Tertiaire	Gaz à Effet de Serre (GES)	5	0	7	2	Polluants atmosphériques	16	330	8	412	16	2	82	51	1	18	148	12	478	99	13	1	1	1	1	0	2	0	4	165	132	110	91
	Emi	dentiel		74 718	0	1 018	1 885		2 546	15 391	226 468	1 319 538	1 589	234	7 861	5185	134	1 840	15 052	1171	48 501	16 682	48 592	4143	4 639	2 838	2 413	1 226	6 627	382	26 324	104 558	99 320	97 220	96 167
		Total général Rési		89 609	180 398	7 331	184 552		309 421	221 863	238 437	1 458 867	3 474	862	13214	9178	4 594	85 028	21774	2 104	71 566	47 858	49 500	4 189	4 865	3 040	2 439	1 244	6 688	396	26 638	154 987	135 638	122 757	115 939
	des énergies			7 694	81 982	3 061	83 093		228 389	119 380	7 628	82 754	1 493	196	4 015	3 415	3 590	60 804	4 636	753	17 649	2710	331	30	32	19	20	13	44	6	164	37 227	23 704	14 045	9 505
	à l'ensemble	Chauffage urb Industrie		260	8 516	315	8 619		10 549	12 894	388	4 368	247	211	966	276	515	14 076	1 753	105	4 095	17 264	43	4	18	2	1	1	3	0	11	269	250	415	299
	Emissions liées à l'ensemble des énergies	Tertiaire (936	20 202	664	20 428		11 687	25 175	938	5 801	89	17	176	126	24	8 087	255	58	191	98	134	3	42	43	2	1	5	1	38	2 106	1 665	721	999
	-11			80 718	269 69	3 291	72 413		58 797	64 413	229 482	1 365 944	1 666	238	8 027	5 362	466	2 062	15130	1 188	49 055	27 789	48 993	4 1 4 9	4 7 7 4	2 977	2 417	1 229	969 9	385	26 425	114 957	109 719	107 576	105 569
		GES / Polluant Résidentiel		CH4	c02	NZO	Total GES		S02	NOx	COVNM	00	As	Cd	Ċ	no	Hg	Ξ	Pb 8	Se	Zn	PCDD-F	8 HAP	ВаР	BbF	BKF	IndPy	BghiPe	ВаА	BahA	FluorA	TSP	PM10	PM2,5	PM1,0

ADEME 22/54

Figure 5 : Répartition des émissions directes de polluants atmosphériques liées à l'usage de bois et des sousproduits du bois par secteur en 2005¹²

 $^{^{12}}$ Les émissions induites par l'utilisation des liqueurs noires dans le secteur industriel ne sont pas prises en compte ici.

En termes de répartition territoriale, la majorité des émissions de polluants induites par le bois se situent essentiellement en ZAS 3, soit en zone rurale (voir tableau 15). Ce constat s'explique notamment par une diffusion plus importante des solutions biomasse énergie dans ce type de territoires. Une meilleure accessibilité à la ressource constitue l'un des arguments principaux pour expliquer cette distribution.

La répartition sectorielle des émissions liées au bois est assez similaire selon les types de territoire. En effet, comme en témoigne la figure 6, quelque soit la ZAS considérée, le secteur résidentiel est responsable de plus de 90% des émissions liées à la biomasse énergie. Il apparaît toutefois essentiel de nuancer ce propos dans la mesure où les émissions liées à l'industrie n'ont pu être déterminées à l'échelle de la ZAS pour cause de manques de données.

Figure 6 : Répartition des émissions directes de polluants atmosphériques liées à l'usage de bois et des sousproduits du bois par secteur et par ZAS en 2005

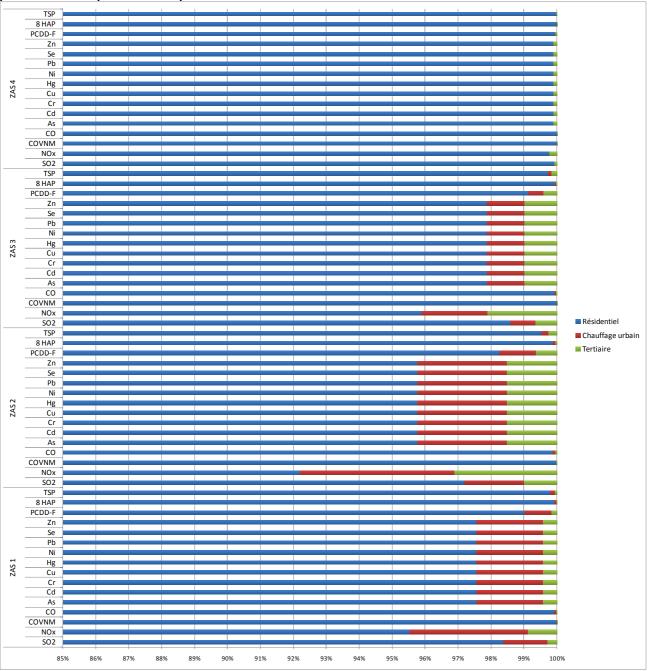


Tableau 15 : Emissions directes de GES et de polluants atmosphériques liées au chauffage des secteurs résidentiel et tertiaire et à la production de chaleur des réseaux de chauffage urbain par ZAS en 2005

résic	ıer	itie	∌ I €	et t	er	tia	ire) e	t à	la	pr	OC	luc	cti	on	d€	e c	ha	lle	ur	de	S I	rés	sea	ในว	(d	e e	cha	au	tta	ge	ŧ u	rba	ain
du bois	Total général		91%	%0	54%	%7		3%	%91	98%	%96	82%	51%	%88	95%	14%	%8	%06	%68	87%	37%	%66	100%	%96	94%	100%	%001	100%	%66	%66	%68	89%	%06	91%
sous-produits nergies	ZAS 4		89%	0%	17%	1%		3%	11%	97%	95%	87%	83%	95%	93%	27%	7%	97%	88%	81%	63%	38%	100%	97%	94%	100%	100%	100%	38%	100%	91%	91%	92%	93%
sions dues au bois et sous-pr dans l'ensemble des énergies	ZAS 3		35%	%0	39%	3%		2%	28%	99%	98%	35%	92%	81%	81%	34%	28%	%66	%26	%66	%99	%66	100%	%26	82%	100%	100%	100%	%66	100%	95%	92%	92%	%26
Part des émissions dues au bois et sous-produits du bois dans l'ensemble des énergies	ZAS 2		81%	%0	16%	4%		2%	10%	81%	94%	77%	45%	84%	%06	12%	969	%28	83%	%06	33%	%86	100%	94%	92%	100%	%66	100%	%86	%66	%98	%98	81%	%68
Part des			78%	0%	8%	1%		1%	5%	94%	89%	47%	14%	25%	72%	3%	2%	89%	61%	%99	10%	98%	%66	91%	89%	100%	%66	100%	%86	%66	78%	78%	80%	82%
sis	Total général ZAS 1		74 731	0	1 035	1 890		2 587	16 123	226 488	1 320 552		240	8 051	5310	137	1 884	15417	1 199	49678	16 845	48 625	4146	4643	2 840	2415	1 226	6 631	382	26 341	104 841	99 550	97 416	96 333
Emissions liées au bois et sous-produïts du bois	ZAS 4		385	0	5	10		12	75	1166	6519		1		25	1	6	73	9				22			13	9	35	2	138	999	532	520	515
u bois et sous	ZAS 3	Serre (GES)	56 569	0	790	1 433	osphériques	1 975	12 260	171 468	1 007 243	1 242	183	6146	4 054	105	1 438	11 769	915	37 922	12 885	36 766	3135	3510	2147	1 826	927	5 014	289	19918	78 722	74 752	73 151	72 340
ssions liées a	ZAS 2	Gaz à Effet de Serre (GES)	8 015	0	111	203	Polluants atmosphériques	279	1 790	24 287	140 345		26		571	15	203	1 659	129	5 344	1 785	5 257	448	502	307	261	133	717	41	2 848	11 488	10 904	10 667	10 545
Ē	ZAS 1		9 762	0	128	245		321	1 998	29 566	166 446	202	30	1 001	999	11	234	1917	149	6177	2 093	6 346	541	909	371	315	160	865	90	3 438	14 072	13 363	13 078	12 933
	Total général		81914	98 415	4 270	101 459		81 032	102 482	230 809	1 376 113	1981	466	9 199	5 764	1 005	24 225	17 138	1351	53917	45 148	49 169	4 159	4 833	3 021	2 420	1231	6644	387	26 474	117 760	111934	108 712	106 434
des énergies	ZAS 4		434	999	29	684		358	694	1196	6 840	6	1	40	27	2	132	75	9	242	128	258	22	25	16	13	9	35	2	139	618	586	999	556
Emissions liées à l'ensemble des énergies	ZAS 3		59 720	41 328	2 005	43 204		41 195	43 079	173 193	1 032 741	1 311	199	6 304	4 181	305	5137	11 910	945	38 452	19 424	37 074	3140	3614	2 2 5 4	1 829	930	5 021	292	19 995	85 702	81 572	79 597	78116
missions liées	ZAS 2		9 261	16 963	691	17 372		11 642	17 345	25 041	149 010	227	58	1 028	929	122	4 339	1 901	155	5 933	5 402	5 341	450	531	335	262	133	719	42	2 869	13 328	12 644	12 204	11 908
Ш	ZAS 1 Z		12 499	39 459	1 545	40 200		27 837	41 364	31 379	187 522	435	208	1 827	919	575	14 617	3 251	244	9 290	20 194	6 496	547	693	417	317	161	698	51	3 471	18113	17 132	16 345	15 854
	GES / Polluant 2		CH4	c02	N2O	Total GES		S02	NOx	COVNIM	00	As	Cd	cr	cn	Hg	Ξ	84	Se	Zn	PCDD-F	8 HAP	BaP	BbF	BkF	IndPy	BghiPe	Вад	BahA	FluorA	TSP	PM10	PM2,5	PM1,0

ADEME 25/54

Tableau 16 : Emissions directes de GES et de polluants atmosphériques liées au chauffage du secteur résidentiel en 2005

00.0		ILIE				05		70	70	20	20	20	70	70	70	70	70	70	70	20	70	70	70	70	20	30	20	<u> </u>	70	10	70	20	20	70
du bois	Total généra.		93%	%0	31%	3%		4%	24%	%66	91%	%96	%86	88%	91%	29%	89%	%66	%66	%66	%09	%66	100%	826	95%	100%	100%	100%	%66	100%	91%	91%	%06	91%
ous-produits nergies	ZAS 4		91%	%0	23%	5%		2%	18%	%86	%96	%96	%86	%86	%26	32%	%06	100%	%66	%66	963%	%66	100%	%86	82%	100%	100%	100%	%66	100%	83%	83%	93%	33%
sions dûes au bois et sous-pr dans l'ensemble des énergies	ZAS 3		95%	%0	44%	4%		2%	35%	%66	%86	81%	%66	%66	%86	37%	85%	100%	%66	%66	%69	%66	100%	%86	%96	100%	100%	100%	%66	100%	%26	95%	95%	%26
Part des émissions dûes au bois et sous-produits du bois dans l'ensemble des énergies	ZAS 2		89%	%0	21%	5%		3%	16%	%86	32%	%56	%86	%86	%96	26%	%88	%66	38%	%66	21%	%66	100%	%96	94%	100%	100%	100%	%66	%66	89%	89%	89%	%68
Part des	ZAS 1		82%	%0	13%	41%		2%	%6	%96	91%	88%	%56	94%	91%	12%	75%	%66	%96	%26	35%	%66	100%	%96	93%	100%	100%	100%	%66	%66	84%	83%	83%	84%
s.	tal général		74 718	0	1018	1 885		2 546	15 391	226 468	1 319 538	1 589	234	7 861	5 185	134	1840	15 052	1171	48 501	16 682	48 592	4143	4 639	2 838	2 413	1 226	6 627	382	26 324	104 558	99 320	97 220	96 167
Emissions liées au bois et sous-produits du bois	ZAS 4 7		385	0	5	10		12	22	1 166	6 519	8	1	38	25	1	6	73	9	235	81	255	22	24	15	13	9	35	2	138	280	532	520	515
bois et sous-	ZAS 3 Z	Serre (GES)	56 560	0	622	1 429	sphériques	1 947	11 757	171 455	1 006 553	1 216	179	6 016	3 968	102	1 408	11 521	968	37 123	12 775	36 744	3 133	3 508	2146	1 825	927	5 011	289	19 906	78 521	74 589	73 013	72 224
sions liées au	ZAS 2 Z	Gaz à Effet de Serre (GES)	8 013	0	108	202	Polluants atmosphériques	271	1 650	24 283	140 149	168	25	829	547	14	194	1 588	124	5118	1 754	5 251	448	501	307	261	132	716	41	2 845	11 435	10 861	10 630	10 514
Emis	AS1 Z		9 760	0	126	244		316	1 909	29 564	166 317	197	29	226	644	17	229	1 870	145	6 026	2 073	6 341	541	909	370	315	160	865	90	3 435	14 042	13 338	13 056	12915
	Total général		80 718	69 69	3 291	72 413		58 797	64413	229 482	1 365 944	1 666	238	8 027	5 362	466	2 062	15 130	1 188	49 055	27 789	48 993	6149	4774	2 977	2 417	1 229	6 636	385	26 425	114 957	109 719	107 576	105 569
les énergies			423	440	21	456		227	419	1 185	6 777	8	1	39	26	2	10	73	9	237	128	257	22	25	15	13	9	35	2	139	009	572	999	551
à l'ensemble o	ZAS 3 Z		59 390	33 898	1 757	35 690		36 253	33 266	172 852	1 030 054	1 257	181	6 104	4 062	277	1 525	11 562	908	37 414	18 620	37 005	3 137	3 596	2 236	1 827	928	5 017	291	19 972	84 748	80 815	79 217	77 812
Emissions liées à l'ensemble des énergies	ZAS 2 ZA		9 029	11 620	809	11 967		7 893	10 319	24 788	147 193	177	25	849	895	53	220	1 597	126	5 183	3 068	5 308	449	521	327	261	133	717	42	2 859	12814	12 240	12 004	11 753
En			11 876	23 739	1 005	24 300		14 423	20 410	30 657	181 920	225	31	1 035	202	133	307	1 898	152	6 221	5 974	6 423	542	633	399	316	161	298	51	3 456	16 795	16 092	15 795	15 453
	GES / Polluant ZAS 1		CH4	CO2	NZO	Total GES		SO2	NOX	COVNIM	00	As	PO	cr.	no	Hg	Έ	Pb	Se	Zn	PCDD-F	8 HAP	BaP	BbF	BKF	IndPy	BghiPe	Вад	BahA	FluorA	TSP	PM10	PM2,5	PM1,0

ADEME 26/54

Tableau 17 : Emissions directes de GES et de polluants atmosphériques liées au chauffage du secteur tertiaire en 2005

en	20	005	5																																
du bois		Total général		1%	960	1%	960		960	1%	1%	7%	23%	14%	44%	41%	%9	%0	58%	20%	62%	70%	10%	40%	3%	2%	40%	23%	38%	14%	19%	8%	8%	15%	16%
ous-produits (ZAS 4		00%	%0	%0	%0		%0	%0	%0	%0	2%	1%	4%	4%	%0	%0	%8	1%	%6	12%	1%	4%	%0	%0	4%	2%	3%	1%	1%	%0	%0	1%	1%
es au bois et s	dans l'ensemble des énergies	ZAS 3		1%	%0	2%	%0		%0	3%	2%	15%	41%	27%	%59	61%	12%	1%	%92	37%	%62	84%	18%	28%	%9	4%	58%	38%	26%	26%	32%	15%	15%	27%	28%
Part des émissions dues au bois et sous-produits du bois	dans l'en	ZAS 2		%0	%0	1%	%0		%0	1%	1%	%9	20%	12%	40%	37%	%5	%0	54%	17%	28%	%99	9%6	37%	3%	2%	37%	21%	35%	13%	17%	7%	7%	13%	14%
Part des		ZAS 1		00%	00%	%0	%0		%0	%0	%0	1%	3%	2%	%8	%2	1%	%0	14%	3%	16%	21%	1%	8%	%0	%0	8%	4%	7%	2%	3%	1%	1%	2%	2%
		Total général		5	0	2	2		16	330	8	412	16	2	78	51	4	18	148	12	478	99	13	4	1	4	1	0	2	0	7	165	132	110	91
	Emissions liées au bois et sous-produits du bois	ZAS 4		0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	u bois et sous	ZAS 3	Serre (GES)	4	0	5	2	osphériques	13	257	9	321	12	2	09	40	1	14	115	6	372	51	10	1	1	1	1	0	1	0	9	128	102	85	71
	issions liées a	ZAS 2	Gaz à Effet de Serre (GES)	1	0	1	0	Polluants atmosphériques	3	99	1	70	3	0	13	6	0	8	25	2	81	11	2	0	0	0	0	0	0	0	1	28	22	19	15
		ZAS 1		0	0	0	0		1	18	0	22	1	0	4	3	0	1	8	1	25	4	1	0	0	0	0	0	0	0	0	6	7	9	5
		Total général		936	20 202	\$99	20 428		11 687	25 175	938	5 801	89	17	176	126	24	8 087	255	58	191	98	134	3	42	43	2	4	5	4	38	2 106	1665	721	566
	des énergies	ZAS 4		7	162	5	164		102	202	7	42	0	0	1	1	0	69	1	0	3	0	1	0	0	0	0	0	0	0	0	17	13	5	4
	s à l'ensemble	ZAS 3		309	996 9	224	7 042		4 444	9068	311	2136	30	7	83	99	6	2 735	151	25	469	61	99	2	16	11	1	1	3	0	17	858	629	315	249
	Emissions liées à l'ensemble des énergies	ZAS 2		184	3 973	131	4 018		2 288	4 943	185	1130	13	С	33	24	5	1615	46	11	138	17	26	1	8	8	0	0	1	0	7	408	323	138	109
		ZAS 1		436	9101	304	9 205		4 853	11 124	436	2 492	24	2	49	37	11	3 668	99	22	156	17	51	1	17	17	0	0	1	0	13	821	649	262	204
		GES / Polluant		CH4	002	N2O	Total GES		SO2	XON	MNAOO	00	As	Cd	Cr.	no	БH	Ξ	qd	Se	Zn	PCDD-F	8 HAP	ВаР	BbF	BKF	IndPy	BghiPe	ВаА	BahA	FluorA	TSP	PM10	PM2,5	PM1,0

ADEME 27/54

Tableau 18 : Emissions directes de GES et de polluants atmosphériques liées à la production de chaleur des réseaux de chauffage urbain par 7AS en 2005

rés	ea	au	x d	e	ch	au	ffa	ge	u	rb	air	ı p	ar	Z	۱S	er	า 2	00	5																
du bois		Total général		3%	%0	3%	%0		%0	3%	3%	14%	966	2%	11%	27%	%0	%0	12%	16%	17%	1%	46%	25%	11%	77%	9629	81%	94%	%29	94%	17%	18%	21%	72%
ous-produits (ergies	ZAS 4		0%	03%	%0	%0		%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
s au bois et s	dans l'ensemble des énergies	ZAS 3 Z		22%	%0	25%	%0		3%	27%	23%	%29	28%	19%	%59	83%	%9	2%	%29	%29	%52	8%	93%	83%	64%	81%	%96	38%	%66	%56	100%	%92	78%	81%	83%
Part des émissions dûes au bois et sous-produïts du bois	dans l'ens	ZAS 2 Z		3%	%0	4%	%0		%0	4%	4%	18%	13%	2%	16%	32%	1%	%0	18%	19%	24%	1%	%25	34%	16%	84%	75%	81%	%96	%92	%26	23%	25%	29%	33%
Part des				1%	%0	1%	%0		%0	1%	1%	3%	2%	%0	3%	%8	%0	%0	3%	4%	4%	%0	15%	%2	3%	43%	29%	49%	%82	31%	%62	4%	4%	2%	2%
	S	Total général ZAS 1		8	0	10	3		24	402	12	602	23	8	113	92	2	97	217	17	869	96	20	2	2	1	1	0	က	0	10	118	98	98	74
	its du be	ZAS 4 7		0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	bois et sous-p	ZAS 3 Z	Serre (GES)	5	0	9	2	sphériques	15	246	7	369	14	2	69	46	1	16	133	10	428	65	12	1	1	1	1	0	2	0	9	72	09	53	46
	sions liées au	ZAS 2	Gaz à Effet de Serre (GES)	2	0	2	1	Polluants atmosphériques	5	84	2	126	5	1	24	16	0	9	45	4	146	20	4	0	0	0	0	0	1	0	2	25	21	18	16
		151		1	0	2	1		4	72	2	108	4	1	20	13	0	5	39	3	125	17	3	0	0	0	0	0	0	0	2	21	18	15	13
		Total général ZA		260	8516	315	8 679		10 549	12 894	388	4 368	247	211	966	276	515	14 076	1 753	105	4 095	17 264	43	7	18	2	1	4	3	0	11	269	550	415	299
		ZAS 4 7		4	63	3	64		28	74	4	20	0	0	1	0	0	53	1	0	2	0	0	0	0	0	0	0	0	0	0	1	1	0	0
	à l'ensemble o	ZAS 3 Z		22	464	23	472		498	206	30	551	24	11	107	22	19	877	197	15	699	743	13	1	2	1	1	0	2	0	9	98	78	99	55
	Emissions liées à l'ensemble des énergies	ZAS 2 Z		47	1 370	53	1 387		1 462	2 083	89	289	37	29	146	45	64	2 504	257	19	612	2 317	2	1	0	0	0	0	1	0	2	105	81	61	47
				188	6618	236	969 9		8 561	9 830	287	3110	186	170	743	175	431	10 643	1 297	7.1	2 913	14 203	23	5	14	0	1	0	1	0	2	496	391	288	197
		GES / Polluant ZAS 1		CH4	CO2	NZO	Total GES		SO2	NOx	COVNM	00	As	Cd	Ċ	no	Hg	Έ	Pb	Se	Zn	PCDD-F	8 HAP	BaP	BbF	BKF	IndPy	BghiPe	ВаА	BahA	FluorA	TSP	PM10	PM2,5	PM1,0

28/54 ADEME

3.3.3 Zoom sur le secteur résidentiel pour l'année 2005

Le secteur résidentiel est le plus consommateur de biomasse énergie et aussi le plus émetteur de polluants. Une analyse plus poussée apparaissait donc intéressante dans le cadre de cette synthèse.

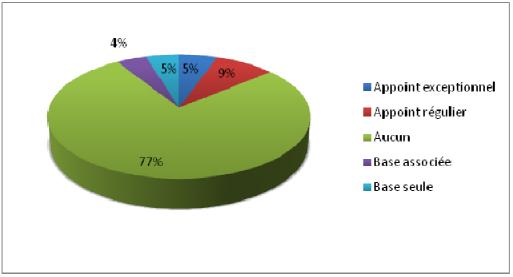

L'analyse de la répartition des usages du bois fait ressortir une caractéristique importante concernant cette énergie de chauffage : la majorité des foyers chauffés au bois utilisent cette énergie comme appoint (voir tableau 19 et figure 7). Ce constat traduit toute l'importance du traitement de la thématique des solutions de chauffage bi-énergies dans le cadre de la réalisation d'un bilan énergétique concernant la biomasse énergie et au-delà pour les simulations prospectives.

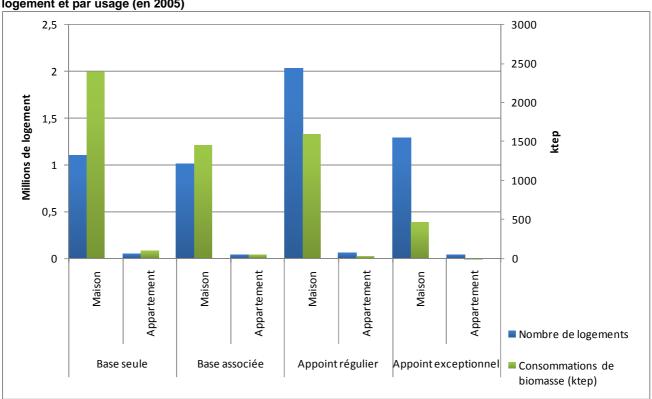
Tableau 19 : Nombre de résidences principales françaises selon leur usage de la biomasse énergie (en 2005) et

consommations de biomasse liées au chauffage associées

Usages du bois	Nombre de logements (en millions)	Part représentée en nombre de logements (%)	Consommations de biomasse (en ktep)	Consommations de biomasse (en milliers de stères)	Part représentée en consommations de biomasse (%)
Aucun	19,04	77,2%			0,00%
Base seule	1,15	4,7%	2 493	16 953	41,0%
Base associée	1,05	4,3%	1 509	10 260	24,8%
Appoint régulier	2,09	8,5%	1 616	10 989	26,5%
Appoint exceptionnel	1,33	5,4%	469	3 191	7,7%
Total	24,67	100,00%	6 087	41 393	100,0%

Figure 7 : Répartition du nombre de résidences principales françaises selon leur usage de la biomasse énergie (en 2005)

ADEME 29/54


Comme le montrent le tableau 20 et la figure 8, environ 5,44 millions de maisons individuelles utilisent le bois comme énergie de chauffage ce qui représente 97% des résidences principales chauffées au bois et près de 38 % de l'ensemble des maisons individuelles. Ce type de bâtiment consomme plus de 5 900 ktep de bois, soit environ 97% des consommations de biomasse énergie du secteur résidentiel.

Seuls 190 000 appartements, soit 0,4 % du parc de résidences principales français, utilisent le bois comme énergie de chauffage. Plus de 92% de ces derniers utilisent un système de chauffage domestique. Les près de 8% restants (environ 15 000 appartements) sont quant à eux chauffés à l'aide de chaudières au bois collectives dont la consommation totale liée au chauffage avoisine les 17 ktep de biomasse énergie.

Tableau 20 : Consommations de biomasse énergie liées au chauffage des résidences principales par type de logement et par usage (en 2005)

	ta: acage (c.: =ccc)	Nambra da la varianta	Concommeticas do	Gamaammatiana da
Type de logement	Usage du bois	Nombre de logements (millions)	Consommations de biomasse (ktep)	Consommations de biomasse (milliers de stères)
Maison	Base seule	1,11	2 393	16 279
Maison	Base associée	1,01	1 455	9 898
Maison	Appoint régulier	2,03	1 594	10 844
Maison	Appoint exceptionnel	1,29	465	3 163
Т	otal Maison	5,44	5 907	40 184
Appartement	Base seule	0,05	100	680
Appartement	Base associée	0,04	53	361
Appartement	Appoint régulier	0,06	22	150
Appartement	Appoint exceptionnel	0,04	5	34
Tota	l Appartement	0,19	180	1 224

Figure 8 : Consommations de biomasse énergie liées au chauffage des résidences principales par type de logement et par usage (en 2005)

ADEME 30/54

Si l'on s'intéresse aux systèmes de chauffage, près de 55% (3,1 millions sur 5,6 millions) des appareils de chauffage au bois utilisés pour le chauffage des résidences principales sont des foyers fermés (voir tableau 21 et figure 9). Ces appareils consomment au total environ 3 050 ktep, soit 35,5 TWh ce qui correspond à une consommation unitaire moyenne d'environ 6,7 stères par logement, soit environ 11 450 kWh par logement.¹³

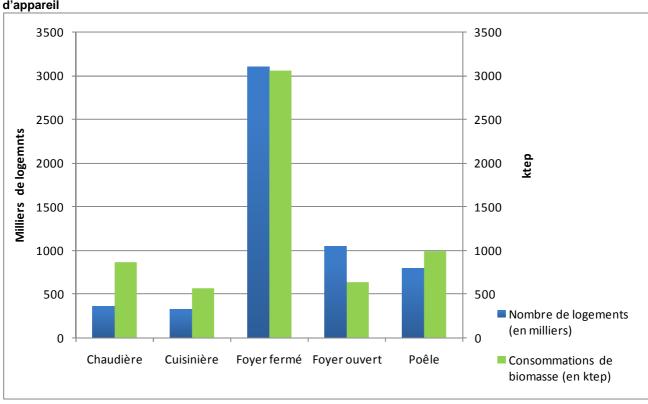

Les différences de consommations unitaires présentées au tableau 21 s'expliquent à la fois par des répartitions différentes en termes d'usage, de performance thermique des logements dans lesquels se trouvent chacun des types de systèmes de chauffage au bois et de répartition territoriale de ces derniers (climat). Ces différences constituent également l'une des clés de compréhension des émissions liées au secteur résidentiel présentées par la suite.

Tableau 21 : Nombre de résidences principales françaises selon le type de systèmes de chauffage au bois

utilisé consommations de biomasse liées au chauffage associées

		Part			Part représentée	Consommations
	Nombre de	représentée	Consommations	Consommations	en	unitaires de
Туре	logements	en nombre de	de biomasse (en	de biomasse (en	consommations	biomasse (en
d'appareil	(en milliers)	logements (%)	ktep)	milliers de stères)	de biomasse (%)	stères)
Chaudière	355	6%	860	5 850	14%	16,5
Cuisinière	330	6%	563	3 830	9%	11,6
Foyer fermé	3 105	55%	3 050	20 748	50%	6,7
Foyer ouvert	1 048	19%	627	4 265	10%	4,1
Poêle	792	14%	987	6 714	16%	8,5
Total	5 630	100%	6 087	41 408	100%	7,4

¹³ Le coefficient de conversion utilisé pour un stère de bois est de 1710 kWh ou 0,147 tep (Source : CEREN)

Tableau 22 : Emissions directes de GES et de polluants atmosphériques liées au chauffage au bois du secteur résidentiel par type d'usage et type d'appareil

16	SI	αe	<u>n</u>	tie			ar) C	1'L			је	e	tt	yp	е	ď	a	pp	aı	re	<u>II</u>										
	Total général		74 718	0	1 018	1 885		2 546	15 391	226 468	1 319 538	1 589	234	7 861	5 185	134	1840	15 052	1171	48 501	16 682	48 592	4143	4 639	2 838	2 413	1 226	6 627	382	26 324	104 558	99 320	97 220	96 167
	Appoint excep T		281	0	2	8		14	82	857	6122	9	1	31	20	1	2	59	5	191	99	397	34	38	23	20	10	54	0	215	462	439	430	425
	point réguli Ap		1 635	0	32	44		80	478	4 983	35 617	36	5	180	119	3	42	345	27	1113	384	2 311	197	221	135	115	99	315	18	1 252	2 687	2 553	2 499	2 472
Poêle	e associée Ap		2 840	0	25	7.2		139	831	8 660	61 893	63	6	314	207	2	73	900	47	1 934	299	4 016	342	383	235	199	101	548	32	2175	4 669	4 436	4 342	4 296
	e seule Bas		3711	0	72	100		181	1 086	11 313	80 854	83	12	410	270	7	96	784	61	2 527	871	5 246	447	501	306	261	132	715	41	2 842	6 100	5 795	5 673	5 612
	int excer Base		3 948	0	28	92		20	419	11 880	48 916	99	10	328	217	9	2.2	629	49	2 027	669	1 985	169	189	116	66	90	271	16	1 075	5 241	4 979	4 874	4 822
ı	int réguli Appo		9 300	0	45	146		112	699	18 955	78 051	106	16	524	346	6	123	1 004	78	3 234	1115	3 167	270	302	185	157	80	432	25	1715	8 363	7 945	7 777	7 694
Foyer ouvert	ssocié (Appoi		2 185	0	15	51		39	232	6 573	27 065	37	5	182	120	0	43	348	27	1121	387	1 098	94	105	64	55	28	150	6	585	2 900	2 755	2 697	2 668
	eule Base		2 394	0	17	99		42	254	7 203	29 661	40	9	199	131	3	47	381	30	1 229	424	1 203	103	115	70	90	30	164	6	652	3178	3 019	2 956	2 924
	excel Base s	ES)	2740	0	43	74	seni	109	651	8 329	2 932	28	6	286	189	2	29	547	43	1 764	809	1 363	116	130	90	99	34	186	11	738	4 258	4 045	3 960	3 917
	guli Appoint exce	Gaz à Effet de Serre (GES		0	180	295	Polluants atmosphériques	450							782	20	278	2 272	177	320	2 524	654	482	540	330	281	143	1771	44	3 063	17 668	16 785		16 255
/er fermé	iéc Appoint ré	Gaz à Eff		0		175			2																									
Foy	Base assoc		9	0						4 20 544																								4 9663
	: Base seule		11 348		18	294		4 44		.,	2.	23							17										4		,	16 753	Ì	·
	Appoint excep		173	0		7		7	52	523	2 565	0)	0	16	11	0	†	31	2	66	34	206	18	20	12	10	9	28	2	111	539	227	222	
nière	Appoint réguli		1 417	0	14	34		34	207	4 285	21 019	27	4	132	87	2	34	252	20	812	280	1 685	144	161	86	84	43	230	13	913	1 960	1 862	1 822	1 803
Cuisii	Base associé		3 030	0	30	73		74	443	9164	44 958	57	8	281	186	5	99	539	42	1 736	599	3 605	307	344	211	179	91	492	28	1 953	4 192	3 982	3 898	3 856
	Base seule E		5 052	0	49	121		123	738	15 279	74 954	95	14	469	309	8	110	868	20	2 895	866	6 010	512	574	351	298	152	820	47	3 256	886 9	6 639	6 438	6 429
ère	Base associéc B		3 042	0	45	78		112	089	9 210	59 140	90	13	447	295	80	105	855	29	2 756	950	523	45	90	31	26	13	7.4	4	283	2 376	2 257	2 2 1 0	2186
Chaudiè	Base seule Ba		6 494	0	66	167		247	1 592	19 658	126 377	199	29	986	651	17	231	1 889	147	980 9	2 056	1121	96	107	92	99	28	153	6	209	5141	4 873	4 762	4 703
	Polluant / GES Ba		CH4	200	NZO	GES		S02	NOX	COVNIM	8	As	PO	Ċ	no	Hg	Z	Pb	Se	Zn	PCDD-F	8 HAP	BaP	BbF	BKF	IndPy	BghiPe	ВаА	BahA	FluorA	TSP	PM10	PM2,5	PM1,0

32/54 ADEME

4 Prospective 2020-2050

4.1 Définition du modèle prospectif

Le modèle prospectif permet de déterminer au pas de temps annuel, de 2005 à 2050, les consommations énergétiques et émissions de polluants atmosphériques selon le niveau de détails décrit dans l'état de référence et selon des leviers de simulation à disposition, tels que présentés dans le tableau 23.

Tableau 23 : Niveaux de détails des sorties du modèle prospectif

		intes du modele prospectii
Echelle territoriale de description	Secteur	Discriminants disponibles
·	Résidentiel	Type de logement (Maison, Appartement)
		Période de construction des logements (Avant 1949, 1949-1975, 1976-1989, 1990-2005, 2006-2012, 2012-2020, 2020-2050)
Zone climatique - ZAS		Type de système de chauffage (Individuel, Collectif)
		Energie de chauffage principale du logement (Chauffage urbain, Gaz naturel, Fioul, Electricité - Effet Joule, GPL, Charbon, Bois, Electricité - PAC)
		Energie de chauffage secondaire du logement (Chauffage urbain, Gaz naturel, Fioul, Electricité - Effet Joule, GPL, Charbon, Bois, Electricité - PAC)
		Usage du bois dans le logement (Base seule, Base associée, Appoint régulier, Appoint exceptionnel)
		Type de système de chauffage au bois utilisé (Individuel : Chaudière, Cuisinière, Poêle, Foyer fermé, Foyer ouvert, Cogénération – Collectif : Chaudière, Cogénération)
		Type de combustible bois utilisé (Bûches, Granulés, Plaquettes, Biomasse agricole)
	Tertiaire	Branche (Administration, Bureaux, Cafés-Hôtels-Restaurants, Commerce, Enseignement, Habitat communautaire, Santé, Sports Loisirs Culture, Transports)
		Energie de chauffage (Chauffage urbain, Gaz, Fioul, Electricité - Effet Joule, Electricité - PAC, Bois, Autres)
		Type de système de chauffage au bois utilisé (Chaudière, Cogénération)
		Type de combustible utilisé (Bûches, Granulés, Plaquettes, Biomasse agricole)
	Chauffage urbain	Energie (UIOM, Gaz, Fioul, Géothermie, Charbon, Bois, Autres)
Nationale	Industrie	Nomenclature d'activités économiques pour l'étude des livraisons et consommations
		d'énergie (NCE)
		Energie (Autres produits pétroliers, Fioul, Gaz, GPL, Houille - Lignite - Charbon pauvre - Coke de houille, Bois et sous-produits du bois, Liqueurs noires, Autres)

Le modèle de simulation prospective a été réalisé selon une approche systémique c'est-à-dire dans une volonté de description globale de l'évolution des consommations énergétiques et des émissions de GES et de polluants atmosphériques du périmètre étudié. La méthodologie complète est décrite dans le rapport.

Les leviers mis en exergue dans le cadre de l'élaboration du modèle sont présentés au tableau 24. Les paramètres utilisés pour la modélisation des impacts de ces derniers ainsi que l'échelle territoriale et les discriminants de paramétrage des hypothèses y sont également présentés. En outre, dans un souci de cohérence systémique, l'établissement de liens entre les secteurs a été recherché. Et ce travail a abouti à la création d'une relation entre demande de chauffage des secteurs résidentiel et tertiaire et production des réseaux de chaleur urbains.

En ce qui concerne l'évolution temporelle, il convient de noter que le paramétrage des hypothèses est possible pour trois plages de simulation : 2006-2012, 2013-2020, 2021-2050.

ADEME 33/54

Réhabilitation thermique des bâtiments Réhabilitation (Diminution du besoin associée) Changements de système de chauffage Changements de système de chauffage Chauffage Chauffage Craractéristiques des chauffage Caractéristiques des chauffage Résidentiel Rés	Secteur	Réhabilitation thermique des bâtiments Changements de système de	Part des logements réhabilités Qualité de la réhabilitation (Diminution du besoin associée) Durée de vie des systèmes Transferts entre solutions	territoriale de paramétrage Zone climatique Nationale	Période de construction, Type de logement (Maison, Appartement) Période de construction, Type de logement (Maison, Appartement) Type de système de chauffage, Energie de chauffage, Type d'appareil de chauffage au bois utilisé (le cas échéant) Type de logement, Type de système de chauffage
Paramètres Paramètres Part des logements rénabilités Zone climatique des bàtiments Part des logements rénabilités Zone climatique des bàtiments Part des logements rénabilités Zone climatique Période de construction, Type de logement (Maison Appartement) Type de système de chauffage au bois utilisé (le cas échéant) Type de système de chauffage principale, Energie de chauffage principale, Energie de chauffage principale, Energie de chauffage neufs Type de système de chauffage principale, Energie de chauffage neufs Type de système de chauffage principale, Energie de chauffage neufs Type de système de chauffage au bois utilisé (le cas échéant), Type de combustible de construction, Branche Tenergie de chauffage, Type de système de ch	Secteur	Réhabilitation thermique des bâtiments Changements de système de	Part des logements réhabilités Qualité de la réhabilitation (Diminution du besoin associée) Durée de vie des systèmes Transferts entre solutions	zone climatique Nationale	Période de construction, Type de logement (Maison, Appartement) Période de construction, Type de logement (Maison, Appartement) Type de système de chauffage, Energie de chauffage, Type d'appareil de chauffage au bois utilisé (le cas échéant) Type de logement, Type de système de chauffage
Réhabilitation thermique des bâtiments	Secteur	Réhabilitation thermique des bâtiments Changements de système de	Part des logements réhabilités Qualité de la réhabilitation (Diminution du besoin associée) Durée de vie des systèmes Transferts entre solutions	Zone climatique Nationale	Période de construction, Type de logement (Maison, Appartement) Période de construction, Type de logement (Maison, Appartement) Type de système de chauffage, Energie de chauffage, Type d'appareil de chauffage au bois utilisé (le cas échéant) Type de logement, Type de système de chauffage
Réhabilitation thermique des bâtiments Réhabilitation (Diminution du besoin associée) Changements de système de chauffage Changements de système de chauffage Chauffage Chauffage Craractéristiques des chauffage Caractéristiques des chauffage Résidentiel Rés		thermique des bâtiments Changements de système de	réhabilités Qualité de la réhabilitation (Diminution du besoin associée) Durée de vie des systèmes Transferts entre solutions	Nationale	Appartement) Période de construction, Type de logement (Maison, Appartement) Type de système de chauffage, Energie de chauffage, Type d'appareil de chauffage au bois utilisé (le cas échéant) Type de logement, Type de système de chauffage
thermique des bâtiments Oualité de la réhabilitation (Diminution du besoin associée) Nationale Période de construction, Type de logement (Maison Appartement)		thermique des bâtiments Changements de système de	Qualité de la réhabilitation (Diminution du besoin associée) Durée de vie des systèmes Transferts entre solutions	Nationale	Période de construction, Type de logement (Maison, Appartement) Type de système de chauffage, Energie de chauffage, Type d'appareil de chauffage au bois utilisé (le cas échéant) Type de logement, Type de système de chauffage
bâtiments ((Diminution du besoin associée) Changements de système de chauffage Chauffage Chauffage Durée de vie des systèmes de chauffage Transferts entre solutions de chauffage Caractéristiques des systèmes de chauffage neufs Résidentiel Résiden		bâtiments Changements de système de	(Diminution du besoin associée) Durée de vie des systèmes Transferts entre solutions		Appartement) Type de système de chauffage, Energie de chauffage, Type d'appareil de chauffage au bois utilisé (le cas échéant) Type de logement, Type de système de chauffage
Appartement) Changements de système de chauffage Chauffage Chauffage Changements de système de chauffage Chauffage Transferts entre solutions de chauffage Caractéristiques des systèmes Résidentiel Résidentiel		Changements de système de	Durée de vie des systèmes Transferts entre solutions		Appartement) Type de système de chauffage, Energie de chauffage, Type d'appareil de chauffage au bois utilisé (le cas échéant) Type de logement, Type de système de chauffage
Changements de système de chauffage Durée de vie des systèmes Nationale Changements de système de chauffage Chauffage Transferts entre solutions de chauffage Caractéristiques des systèmes Résidentiel Résidenti		de système de	Durée de vie des systèmes Transferts entre solutions		Type de système de chauffage, Energie de chauffage, Type d'appareil de chauffage au bois utilisé (le cas échéant) Type de logement, Type de système de chauffage
Changements de système de chauffage Chauffage Chauffage, Type de logement, Type de système de chauffage au bois utilisé (le cas échéant) Transferts entre solutions de chauffage Transferts entre solutions de chauffage Caractéristiques des systèmes de chauffage Caractéristiques des systèmes de chauffage Résidentiel Résiden		de système de	Transferts entre solutions	Nationale	chauffage, Type d'appareil de chauffage au bois utilisé (le cas échéant) Type de logement, Type de système de chauffage
Changements de système de chauffage Transferts entre solutions de chauffage Type de système de chauffage au bois, Type de système de chauffage au bois utilisé (le cas échéant), Type de combustible bois utilisé (le cas échéant) Répartition par type de logement (Maison, Appartement) Type de système de chauffage, Energie de chauffage au bois utilisé (le cas échéant) Type de système de chauffage au bois utilisé (le cas échéant) Type de logement (Maison, Appartement) - ZAS Construction neuve Construction neuve Type de logement T		de système de	Transferts entre solutions	Nationale	Type de logement, Type de système de chauffage
de système de chauffage Transferts entre solutions de chauffage ZAS ZAS Transferts entre solutions de chauffage au bois, Type de système de chauffage au bois, Type de système de chauffage, Energie de chauffage, rus de chauffage, Energie de chauffage, rus de système de chauffage, Energie de chauffage, Type de système de chauffage, Energie de chauffage, Type de système de chauffage au bois utilisé (le cas échéant), Type de combustible bois utilisé (le cas échéant), Type de logement en chauffage au bois utilisé (le cas échéant), Type de logement sullisé (le cas échéant), Type de logement en chauffage au bois utilisé (le cas échéant), Type de logement en chauffage au bois utilisé (le cas échéant), Type de logement en chauffage au bois utilisé (le cas échéant), Type de logement en chauffage au bois utilisé (le cas échéant), Type de système de chauffage au bois utilisé (le cas échéant), Type de système de chauffage au bois utilisé (le cas échéant), Type de système de chauffage au bois utilisé (le cas échéant), Type de système de chauffage au bois utilisé (le cas échéant), Type de système de chauffage au bois utilisé (le cas échéant), Type de système de chauffage au bois utilisé (le cas échéant), Type de système de chauffage au bois utilisé (le cas échéant), Type de système de chauffage au		de système de			
Caractéristiques de systèmes de chauffage neufs Résidentiel Rendements Nationale Rendements Nationale Résidentiel Résidentiel Résidentiel Résidentiel Résidentiel Résidentiel Rendements Nationale Résidentiel Rendements Nationale Résidentiel Rendements Nationale Résidentiel Rendements Nationale Rendements Nationale Résidentiel Résidentiel Rendements Nationale Résidentiel Rendements Nationale Résidentiel Rendements Nationale Rendements Nationale Résidentiel Rendements Nationale Rendements Nationale Résidentiel Rendements Nationale Résidentiel Rendements Nationale Rendements Rendements Nationale R					(Collectif, individuel), Energie de chauffage
Transferts entre solutions de chauffage ZAS du bois, Type de système de chauffage au bois, Tyle de combustible bois utilisé (le cas échéant), Type de système de chauffage au bois utilisé (le cas échéant), Type de combustible bois utilisé (le cas échéant), Type de combustible bois utilisé (le cas échéant), Type de combustible bois utilisé (le cas échéant) Rendements Nationale Type de logement neure Nationale Nationale Type de logement Type de logement Nationale Nationale Nationale Parts de marché des différentes solutions de chauffage Collectif, individuel), Energie de chauffage ub ois, Tyle de combustible utilisé Part de surfaces réhabilitation thermique des bâtiments Nationale Nationale Période de construction, Branche Nationale Nationale Période de construction, Branche Nationale Periode de construction, Branche Nationale Période de construction, Branche Nationale Periode de construction, Branche Nationale Periode de construction, Branche Nationale Nationale Période de construction, Branche Nationale Période de construction, Branche Nationale Nationale		-			
Caractéristiques des systèmes de chauffage Caractéristiques des systèmes de chauffage Rendements Nationale Caractéristiques des systèmes de chauffage neufs Rendements Nationale Nationale Caractéristiques des systèmes de chauffage neufs Rendements Nationale Type de système de chauffage au bois utilisé (le cas échéant), Type de combustible bois utilisé (le cas échéant) Type de système de chauffage au bois utilisé (le cas échéant) Type de système de chauffage au bois utilisé (le cas échéant) Type de système de chauffage au bois utilisé (le cas échéant) Type de combustible utilisé (le cas échéant) Type de combustible bois utilisé (le cas échéant) Type de combustible utilisé (le cas échéant) Type de combustible bois utilisé (le cas échéant) Type de combustible utilisé (le cas éché					
Caractéristiques des systèmes de chauffage, Energie de chauffage, Type d'appareil de chauffage au bois utilisé (le cas échéant), Type de combustible bois utilisé (le cas échéant) de chauffage neufs Résidentiel Résidentiel Rendements Nationale Nationale Nationale Nationale Type de système de chauffage, Energie de chauffage, Energie de chauffage, Type d'appareil de chauffage au bois utilisé (le cas échéant) de chauffage au bois utilisé (le cas échéant). Type de combustible bois utilisé (le cas échéant) de chauffage au bois utilisé (le cas échéant). Type de combustible bois utilisé (le cas échéant) de chauffage au bois utilisé (le cas échéant) de système de chauffage au bois utilisé (le cas échéant) de chauffage au bois utilisé (le cas échéant			i de chauttade	ZAS	
Résidentiel Résidentiel Caractéristiques des systèmes de chauffage neufs Rendements Rendemetrale (le cas échéant) Type de système de chauffage (Collectif, individuel), Energie de chauffage (Collectif, individuel), Energie de chauffage Rendemetrale (Collectif, individuel), Energie de chauffage Rendemetrale (Collectif, individuel), Energie de chauffage Rendemetrale (C		i contract of the contract of			
Résidentiel des systèmes de chauffage neufs Rendements Nationale Utilisé (le cas échéant)					
Résidentiel de chauffage neufs Facteurs d'émissions Facteurs d'émissions Nationale Nombre de logements neufs Construction neuve Construction neuve Répartition par type de logement (Maison, Appartement) Construction neuve Construction neuve Répartition par type de logement (Maison, Appartement) Surface moyenne des logements neufs Qualité thermique de la construction neuve Répartition par type de logement (Maison, Appartement) Surface moyenne des logement (Maison, Appartement) Cone climatique Type de logement Type de logement Type de logement Type de système de chauffage (Collectif, individuel), Energie de chauffage (Collectif, individuel), Energie de chauffage au bois, Type de système de chauffage au bois, Type de combustible utilisé Réhabilitation thermique des bâtiments Changements de système de chauffage Chauffage Chauffage Chauffage Changements de système de chauffage Durée de vie des systèmes Transferts entre solutions Transferts entre solutions Type de logement Type de système de chauffage Collectif, individuel), Energie de chauffage au bois, Type de combustible utilisé Transferts entre solutions Energie de chauffage, Type de système de chauffage Transferts entre solutions					
neufs Facteurs d'émissions Nationale Chauffage, Type d'appareil de chauffage au bois utilisé (le cas échéant), Type de combustible bois utilisé (le cas échéant) Nombre de logements	Dásidandial		Rendements	Nationale	
Facteurs d'émissions Nationale Vane climatique - ZAS - Répartition par type de logement (Maison, Appartement) - ZAS - Surface moyenne des logements neuve Construction neuve Cone climatique - Type de logement, Type de système de chauffage (Collectif, individuel), Energie de chauffage principale, Energie de chauffage au bois, Type de combustible utilisé Chauffage Chauffage Chauffage Construction, Branche Chauffage Construction, Branche Durée de vie des systèmes Transferts entre solutions Nationale Chauffage, Type de système de chauffage, Type de système de chauffage au bois utilisé. Type de combustible bois utilisé Energie de chauffage, Type de système de chauffage au bois utilisé. Type de combustible bois utilisé Energie de chauffage, Type de système de chauffage au bois utilisé.	Residentiei				
Facteurs d'émissions Nationale utilisé (le cas échéant) Nombre de logements neufs - ZAS - Répartition par type de logement (Maison, Appartement) - ZAS - Surface moyenne des logements neufs Nationale Type de logement (Maison, Appartement) - ZAS - Surface moyenne des logements neufs Nationale Type de logement (Collectif, individuel), Energie de chauffage (Collectif, individuel), Energie de chauffage principale, Energie de chauffage au bois, Type de système de chauffage au bois, Type de combustible utilisé Réhabilitation thermique des bâtiments Changements de système de chauffage au bois, Type de système de chauffage (Durée de vie des systèmes de chauffage, Type de système de chauffage.		neurs			
Nombre de logements neufs Zone climatique - ZAS - Répartition par type de logement (Maison, Appartement) - ZAS - Surface moyenne des logements neufs Nationale Type de logement Type de système de chauffage (Collectif, individuel), Energie de chauffage Parts de marché des différentes solutions de chauffage ZAS Type de système de chauffage au bois, Type de combustible utilisé Type de logement Type de logement Type de logement Type de logement Type de chauffage Collectif, individuel), Energie de chauffage au bois, Type de combustible utilisé ZAS Type de combustible utilisé Type de construction, Branche Type de système de chauffage Type de combustible bois utilisé Transferts entre solutions Type de chauffage, Type de système de chauffage Type de combustible bois utilisé Transferts entre solutions Type de système de chauffage Type de système Type de système Type de système Type de systè			Facteurs d'émissions	Nationale	
Répartition par type de logement (Maison, Appartement) - ZAS - Surface moyenne des logements neufs Qualité thermique de la construction neuve Qualité thermique de la construction neuve Type de logement, Type de système de chauffage (Collectif, individuel), Energie de chauffage principale, Energie de chauffage au bois, Type de système de chauffage au bois, Type de système de chauffage principale, Energie de chauffage au bois, Type de système de chauffage au bois, Type de système de chauffage principale, Energie de chauffage au bois, Type de combustible utilisé Part de surfaces réhabilitées Zone climatique Période de construction, Branche Energie de chauffage, Type de système de chauffage au bois utilisé Energie de chauffage, Type de système de chauffage au bois utilisé Energie de chauffage, Type de système de chauffage Energie de				Zone climatique	,
logement (Maison, Appartement)				- ZAS	-
Construction neuve Appartement) Surface moyenne des logements neufs Nationale Type de logement Type de logement Type de logement Type de système de chauffage (Collectif, individuel), Energie de chauffage principale, Energie de chauffage au bois, Type de système de chauffage au bois, Type de combustible utilisé Changements de système de chauffage Changements de système de chauffage Transferts entre solutions Appartement) Surface moyenne des logement Type de logement Type de logement Type de système de chauffage (Collectif, individuel), Energie de chauffage au bois, Type de combustible utilisé Energie de chauffage, Type de système de chauffage au bois utilisé, Type de combustible bois utilisé Energie de chauffage, Type de système de chauffage Transferts entre solutions Type de logement Type de système de chauffage (Collectif, individuel), Energie de chauffage au bois, Type Type de système de combustible bois utilisé Transferts entre solutions					
Construction neuve Surface moyenne des logements neufs Qualité thermique de la construction neuve Zone climatique Type de logement Type de logement Type de système de chauffage (Collectif, individuel), Energie de chauffage principale, Energie de chauffage au bois, Type de système de combustible utilisé Réhabilitation thermique des bâtiments Changements de système de chauffage Chauffage Durée de vie des systèmes Transferts entre solutions Nationale Type de logement Type de logement Type de logement Type de logement Période de chauffage au bois, Type de combustible utilisé Energie de chauffage, Type de système de chauffage					_
Construction neuve Construction neuve Construc		Construction		- ZAG	
neuve Qualité thermique de la construction neuve Zone climatique - Type de logement, Type de système de chauffage (Collectif, individuel), Energie de chauffage principale, Energie de chauffage secondaire, Usage du bois, Type de système de chauffage au bois, Type de système de chauffage au bois, Type de combustible utilisé				Nationale	Type de logement
Type de logement, Type de système de chauffage (Collectif, individuel), Energie de chauffage principale, Energie de chauffage secondaire, Usage du bois, Type de système de chauffage au bois, Type de combustible utilisé Réhabilitation thermique des bâtiments Réhabilitées Changements de système de chauffage Durée de vie des systèmes Type de logement, Type de système de chauffage principale, Energie de chauffage au bois, Type de combustible utilisé Part de surfaces réhabilitées Zone climatique Période de construction, Branche Energie de chauffage, Type de système de chauffage au bois utilisé Energie de chauffage, Type de système de chauffage Durée de vie des systèmes Nationale Energie de chauffage, Type de système de chauffage, Type de système de chauffage, Type de système de chauffage		neuve			71
Parts de marché des différentes solutions de chauffage Part de surfaces Téchauffage Réhabilitation thermique des bâtiments Changements de système de chauffage Chauffage Durée de vie des systèmes Répauffage Chauffage Chauffage Autionale Chauffage Chauffage Chauffage Autionale Chauffage Collectif, individuel), Energie de chauffage principale, Energie de chauffage au bois, Type de combustible utilisé Période de construction, Branche Energie de chauffage, Type de système de chauffage au bois utilisé Energie de chauffage, Type de système de chauffage au bois utilisé, Type de combustible bois utilisé Transferts entre solutions Energie de chauffage, Type de système de chauffage, Type de système de chauffage, Type de système de chauffage			construction neuve	Zone climatique	-
Parts de marché des différentes solutions de chauffage Réhabilitation thermique des bâtiments Changements de système de chauffage Chauffage Durée de vie des systèmes Part de surfaces zone climatique Période de construction, Branche Période de construction, Branche Energie de chauffage au bois, Type de combustible utilisé Période de construction, Branche Energie de chauffage, Type de système de chauffage, Type de système de chauffage au bois utilisé, Type de combustible bois utilisé Transferts entre solutions Periode de construction, Branche Energie de chauffage, Type de système de chauffage					
différentes solutions de chauffage ZAS du bois, Type de système de chauffage au bois, Type de combustible utilisé Réhabilitation thermique des bâtiments Part de surfaces réhabilitées Zone climatique Période de construction, Branche Qualité de la réhabilitation Nationale Période de construction, Branche Changements de système de chauffage, Type de système de chauffage Durée de vie des systèmes Nationale Energie de chauffage, Type de système de chauffage Transferts entre solutions Energie de chauffage, Type de système de chauffage, Type de système de chauffage			Porto do marchá dos		
chauffage ZAS de combustible utilisé Réhabilitation thermique des bâtiments Changements de système de chauffage Durée de vie des systèmes Chauffage ZAS de combustible utilisé Zone climatique Période de construction, Branche Période de construction, Branche Energie de chauffage, Type de système de chauffage au bois utilisé, Type de combustible bois utilisé Transferts entre solutions Chauffage Durée de vie des systèmes Nationale Energie de chauffage, Type de système de chauffage, Type de système de chauffage					
Réhabilitation thermique des bâtiments Changements de système de chauffage Transferts entre solutions Réhabilitation thermique des période de construction, Branche Période de construction, Branche Période de construction, Branche Période de construction, Branche Energie de chauffage, Type de système de chauffage au bois utilisé, Type de combustible bois utilisé Energie de chauffage, Type de système de chauffage, Type de système de chauffage				ZAS	
bâtiments Qualité de la réhabilitation Nationale Période de construction, Branche Energie de chauffage, Type de système de chauffage au bois utilisé, Type de combustible bois utilisé Transferts entre solutions Période de construction, Branche Energie de chauffage, Type de combustible bois utilisé Energie de chauffage, Type de système de chauffage	Tertiaire	Réhabilitation	Part de surfaces		
Changements de système de chauffage Transferts entre solutions Durée de vie des systèmes Nationale Energie de chauffage, Type de système de chauffage au bois utilisé, Type de combustible bois utilisé Energie de chauffage, Type de système de chauffage					
de système de chauffage Chauffage Durée de vie des systèmes Nationale au bois utilisé, Type de combustible bois utilisé Transferts entre solutions Energie de chauffage, Type de système de chauffage			Qualité de la réhabilitation	Nationale	
chauffage Transferts entre solutions Energie de chauffage, Type de système de chauffage		de système de	Durée de vie des systèmes	Nationale	
				Ivationale	
de chauffage ZAS au bois utilisé, Type de combustible bois utilisé		chauffage		ZAS	au bois utilisé, Type de combustible bois utilisé
					Energie de chauffage, Type de système de chauffage
Tertiaire des systèmes Rendements Nationale au bois utilisé, Type de combustible bois utilisé			Rendements	Nationale	
			Factoure d'émissions	Nationalo	Energie de chauffage, Type de système de chauffage
neufs Facteurs d'émissions Nationale au bois utilisé, Type de combustible bois utilisé Taux de construction neuve Nationale Branche		neuis			
				Ivationale	Période de construction, Type de logement (Maison,
Construction construction neuve Nationale Appartement)			•	Nationale	•
neuve Parts de marché des		Construction			
			Parts de marché des		
0			différentes solutions de	74.0	Energie de chauffage, Type de système de chauffage
Nombre de logements et		neuve	différentes solutions de chauffage	ZAS	au bois utilisé, Type de combustible bois utilisé
Chauffage Developpement surfaces tertiaires		neuve Sorties de parc	différentes solutions de chauffage Taux de sortie	ZAS Nationale	
urbain des réseaux raccordés *	Chauffage	Sorties de parc Développement	différentes solutions de chauffage Taux de sortie Nombre de logements et		au bois utilisé, Type de combustible bois utilisé
Mix énergétique Mix énergétique ZAS -	Chauffage urbain	neuve Sorties de parc	différentes solutions de chauffage Taux de sortie Nombre de logements et surfaces tertiaires		au bois utilisé, Type de combustible bois utilisé Branche
Amélioration de Taux de diminution des		Sorties de parc Développement des réseaux Mix énergétique	différentes solutions de chauffage Taux de sortie Nombre de logements et surfaces tertiaires raccordés Mix énergétique	Nationale	au bois utilisé, Type de combustible bois utilisé Branche
		Sorties de parc Développement des réseaux Mix énergétique Amélioration de	différentes solutions de chauffage Taux de sortie Nombre de logements et surfaces tertiaires raccordés Mix énergétique Taux de diminution des	Nationale	au bois utilisé, Type de combustible bois utilisé Branche
energetique energetiques inationale ince		Sorties de parc Développement des réseaux Mix énergétique Amélioration de la performance	différentes solutions de chauffage Taux de sortie Nombre de logements et surfaces tertiaires raccordés Mix énergétique Taux de diminution des consommations	Nationale ZAS	au bois utilisé, Type de combustible bois utilisé Branche * -
	urbain	Sorties de parc Développement des réseaux Mix énergétique Amélioration de	différentes solutions de chauffage Taux de sortie Nombre de logements et surfaces tertiaires raccordés Mix énergétique Taux de diminution des consommations énergétiques	Nationale	au bois utilisé, Type de combustible bois utilisé Branche
Industrie Pénétration de la biomasse	urbain	Sorties de parc Développement des réseaux Mix énergétique Amélioration de la performance énergétique	différentes solutions de chauffage Taux de sortie Nombre de logements et surfaces tertiaires raccordés Mix énergétique Taux de diminution des consommations énergétiques Pénétration de la biomasse	Nationale ZAS	au bois utilisé, Type de combustible bois utilisé Branche * -
	urbain	Sorties de parc Développement des réseaux Mix énergétique Amélioration de la performance énergétique	différentes solutions de chauffage Taux de sortie Nombre de logements et surfaces tertiaires raccordés Mix énergétique Taux de diminution des consommations énergétiques Pénétration de la biomasse énergie (Bois et sous-	Nationale ZAS	au bois utilisé, Type de combustible bois utilisé Branche * -

^{*} La production d'énergie des réseaux de chaleur urbains est directement définie par les demandes d'énergie des secteurs résidentiel et tertiaire. Le levier d'action correspondant se situe donc essentiellement au niveau des parts de marché du chauffage urbain dans les constructions neuves résidentielles et tertiaires ainsi qu'au niveau des renouvellements de systèmes de chauffage. A noter toutefois que la production de chaleur de ces réseaux destinée aux autres usages que le chauffage (production d'ECS notamment) a été considérée comme invariante au cours du temps. Ceci constitue une hypothèse assez lourde dans la mesure où tout nouveau raccordement est susceptible d'induire une augmentation de la production nécessaire au chauffage du bâtiment raccordé, ici prise en compte, mais également une production d'énergie supplémentaire liée à d'autres usages.

ADEME 34/54

4.2 Hypothèses principales de chacun des scénarios

4.2.1 Eléments de cadrage

Les scénarios prospectifs élaborés dans le cadre de cette étude ont été établis à partir de l'analyse de l'état de référence 2005 couplée à la prise en compte des objectifs nationaux fixés par le Grenelle de l'Environnement et l'ensemble des documents prospectifs officiels (Programmation pluriannuelle des investissements de Chaleur,..).

Ces objectifs constituent les éléments de cadrage des scénarios élaborés, à savoir :

- Rythme de 400 000 logements réhabilités par an à compter de 2013 (Article 5 de la loi Grenelle 1)
- Atteinte des objectifs relatifs au développement de la biomasse énergie fixés par la PPI Chaleur (voir tableau 25)
- Développement important des réseaux de chaleur
- Atteinte du Facteur 4 en 2050
- Réduction des consommations d'énergie de 38 % d'ici à 2020¹⁴ (en énergie primaire hors EnR)

A noter que ces deux derniers objectifs sont, plutôt que des éléments structurants pris en compte à l'heure de l'élaboration des simulations, des cibles auxquelles les résultats des scénarios ont été comparés.

Tableau 25 : Ventilation par filière des objectifs de consommation de biomasse du COMOP 10 aux horizons 2012 et 2020 (source : PPI chaleur 2009-2020)

Secteur	Unité	Situation 2006	Objectif au 31/12/2012	Objectif 2020
Résidentiel individuel*	ktep	7400	7400	7400
	millions de logements	5,75	7,3	9
Bâtiments	ktep	100	300	800
Réseaux de chaleur collectif/tertiaire	ktep	100	300	1200
Industrie/Process	ktep	1200	1900	3200

^{*} Le libellé « Résidentiel individuel » désigne ici le parc de logements chauffés à l'aide d'un système de chauffage individuel au bois.

4.2.2 Hypothèses

Deux scénarios prospectifs contrastés ont été élaborés, afin de mesurer l'impact de différentes conditions techniques et économiques du développement de la biomasse. L'unique point de divergence entre ces scénarios concerne les chiffres de consommation de biomasse des systèmes de chauffage individuels (objectif du COMOP: 7 400 ktep/an sur toute la période 2006-2020) malgré une augmentation conséquente du nombre de logements chauffés au bois (passage de 5,75 millions de logements chauffés au bois en 2006 à 9 millions en 2020). Le premier scénario table en effet sur un développement de la biomasse énergie dans le résidentiel individuel que l'on peut qualifier d'idéal au regard de la lutte contre le réchauffement climatique: l'hypothèse d'un important développement de l'utilisation du bois en base seule a été posée afin de limiter les besoins de chauffage couverts par les autres énergies, sans aucune contrainte sur la maîtrise à 7400 ktep de la consommation de bois des systèmes de chauffage individuels. Dans le cadre du second scénario, les solutions de chauffage utilisant le bois en tant qu'énergie d'appoint ont été privilégiées afin d'atteindre l'ensemble des objectifs de développement de la biomasse énergie fixée par la PPI Chaleur, notamment la maîtrise à 7400 ktep de la consommation de bois des systèmes de chauffage individuels.

Hormis cette question du respect de la stabilisation des consommations dans le résidentiel individuel, les principales hypothèses posées sont communes aux deux scénarios. Les paragraphes suivants décrivent ces dernières.

ADEME 35/54

¹⁴ Il convient de souligner que cet objectif de réduction des consommations est exprimé en énergie primaire et ne concerne par les énergies renouvelables.

4.2.2.1 Secteur résidentiel

Développement du bois énergie

L'hypothèse d'un développement important du bois énergie (atteinte de 9 millions de logements chauffés au bois domestique en 2020) a été posée via le choix de parts de marché importante des systèmes bois aussi bien dans la construction neuve que sur le marché constitué par les solutions de chauffage à renouveler. La ZAS 3, soit la part du territoire que l'on peut considérer comme rurale, a été prise comme le lieu privilégié du développement de la biomasse énergie du fait de la disponibilité plus importante de la ressource et du moindre risque en termes de qualité de l'air.

En ce qui concerne les combustibles bois utilisés, le paramétrage des hypothèses a été réalisé de manière à conserver la bûche comme le combustible utilisé majoritairement par les appareils domestiques. Il a en effet été considéré que le stock actuel de logements chauffés au bois conservait son combustible d'origine soit la bûche au gré des renouvellements pour l'immense majorité des cas. Toutefois, un usage croissant des granulés et plaquettes a été prévu via la pénétration de ces combustibles en substitution de systèmes utilisant une autre énergie que le bois ou bien dans la construction neuve.

Réhabilitation importante

Le modèle a été paramétré dans l'optique d'atteindre un rythme annuel de 400 000 logements réhabilités d'ici à 2013. A cette fin, il a été considéré que, sur la période 2006-2012, le nombre de réhabilitations par an est d'environ 150 000 logements puis de plus 400 000 à compter de 2013. En termes de ciblage, ces réhabilitations ont été plus volontiers appliquées à des logements anciens situés en zone climatique H1. Il a par ailleurs été estimé que la qualité de réhabilitation correspondait à une réduction de 30% des besoins de chauffage des logements.

4.2.2.2 Secteur tertiaire

Développement du bois énergie

Une pénétration importante du bois énergie a été implémentée au niveau de la construction neuve ainsi qu'en substitution des systèmes existants utilisant une autre énergie que le bois. Le renouvellement des systèmes de chauffage au bois en place en 2006 ne constituait aucun enjeu véritable dans la mesure où ces derniers ne représentent qu'une part marginale de la consommation énergétique liée au chauffage du secteur tertiaire.

Réhabilitation importante

De manière à prendre en considération la volonté de réhabilitation, un taux annuel de réhabilitation de 2% a été implémenté de manière homogène sur tout le territoire. Il a été estimé que les réhabilitations mises en œuvre induisaient une réduction de 30% des besoins de chauffage des logements.

4.2.2.3 Chauffage urbain

Comme indiqué précédemment, le jeu d'hypothèses posées permet une augmentation importante des parts de marché des réseaux de chaleur urbains aussi bien dans le parc résidentiel que tertiaire. A cette croissance des parts de marché a été couplée une pénétration importante de la biomasse énergie dans le mix énergétique des réseaux de chaleur. Cette pénétration a été considérée comme inversement proportionnelle au niveau de ruralité du territoire.

4.2.2.4 Industrie

A l'inverse de ce qui a été réalisé pour les secteurs résidentiel et tertiaire, le secteur industriel a été considéré comme « inerte », c'est-à-dire qu'aucune hypothèse de dynamique (développement ou récession) du secteur industriel n'a été posée. Cependant, l'amélioration de la performance énergétique des industries a été modélisée à l'aide d'un facteur de diminution des consommations à hauteur de 0,5% par an.

En termes de développement de la biomasse énergie, une pénétration importante du bois a été paramétrée dans les branches où il est déjà utilisé de manière non négligeable comme l'industrie du bois et du carton et dans une moindre mesure dans les industries laitières et agroalimentaires.

ADEME 36/54

4.3 Résultats des scénarios prospectifs 2020-2050

4.3.1 Consommations d'énergie en 2020-2050

Les résultats fournis par le modèle sont, quelque soit le scénario, en accord avec les objectifs de développement de la biomasse énergie fixés par la PPI Chaleur hormis en ce qui concerne les consommations de bois du secteur résidentiel pour le scénario 1 (voir tableau 26).

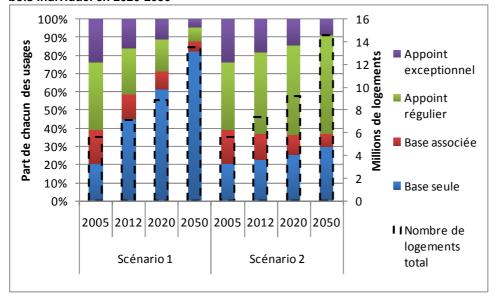

Dans le scénario 1, la consommation de bois des systèmes de chauffage atteint 11 505 ktep en 2020 (contre 7 550 ktep pour le scénario 2) ce qui va à l'encontre de l'objectif de maîtrise des consommations de ce secteur affiché dans la PPI Chaleur¹⁵. La différence d'évolution des structures des usages du bois permet d'expliquer cette divergence entre les deux scénarios. Le nombre de logements chauffés par des systèmes de chauffage au bois individuels utilisés en appoint passe en effet de 3,4 à 5,9 millions entre 2005 et 2020 dans le cadre du scénario 2 contre 2,5 en 2020 pour le scénario 1.

Tableau 26 : Atteinte des objectifs de développement de la biomasse énergie fixés la PPI Chaleur en 2012-2020

Donnée	Secteur	Unité	2005	2006	20	12	20		20	
Donnee	Secteur	Office	2005	2000	Sc. 1	Sc. 2	Sc. 1	Sc.2	Sc. 1	Sc. 2
PPI Chaleur	Résidentiel individuel*	ktep	-	7 400	7 4	100	7 4	00	-	
Modèle	Résidentiel individuel	ktep	6 070	6 551	9 230	7 105	11 505	7 550	15 089	7 657
Ecart	Résidentiel individuel	-	-	-11%	25%	-4%	55%	2%		-
PPI Chaleur	Résidentiel individuel	millions de logements		5,75	7	,3	ç)	-	
Modèle	Résidentiel individuel	millions de logements	5,62	5,85	7,17	7,23	8,87	8,98	13,53	13,76
Ecart	Résidentiel individuel	-	-	2%	-2%	-1%	-1%	0%	-	
PPI Chaleur	Bâtiments	ktep	-	100	30	00	80	00		•
Modèle	Résidentiel collectif	ktep	17	34	13	32	22	28	44	16
Modèle	Tertiaire	ktep	39	86	34	47	55	57	82	22
Modèle	Résidentiel collectif et tertiaire	ktep	56	120	47	79	78	35	1 2	:68
Ecart	Résidentiel collectif et tertiaire	-	-	20%	60	0%	-2	%	-	-
PPI Chaleur	Réseaux de chaleur	ktep	-	100	30	00	12	00	-	
Modèle	Réseaux de chaleur	ktep	58	96	30	08	1 1	83	1 1	13
Ecart	Réseaux de chaleur	-		-4%	3	%	-1	%		
PPI Chaleur	Industrie	ktep	-	1 200	1 9	900	3 2	200	-	•
Modèle	Industrie - Bois et sous- produits du bois	ktep	816	974	1 8	331	3 1	94	2 7	'48
Ecart	Industrie	-	-	-19%	-4	!%	0	%		-
Modèle	Industrie - Liqueurs noires	ktep	714	717	7:	37	1 1	181	10)16

^{*} Le libellé « Résidentiel individuel » désigne ici le parc de logements chauffés à l'aide d'un système de chauffage individuel au bois.

Figure 10 : Evolution de la répartition des résidences principales selon leur usage d'un système de chauffage au bois individuel en 2020-2050

¹⁵ Selon l'ADEME, la ressource mobilisable ne serait pas suffisante pour soutenir une demande en bois supérieure à cet objectif.

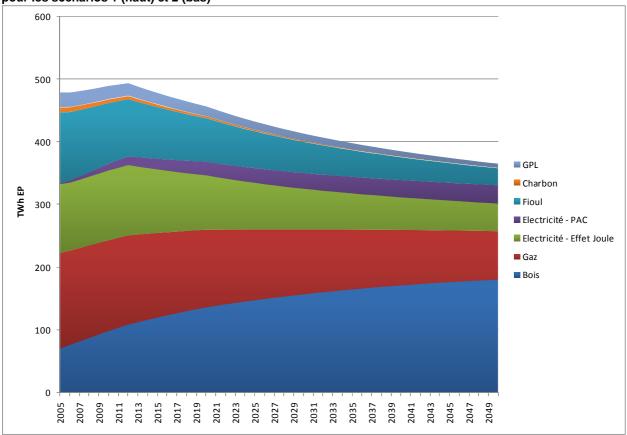
37/54

Ce constat permet de souligner que les objectifs fixés par la PPI Chaleur pour le secteur résidentiel domestique sont atteints dans le cadre du scénario 2 au prix d'un développement de la biomasse énergie majoritairement en tant qu'énergie de chauffage d'appoint dans le parc de logements existants.

Ce choix a des conséquences importantes à une échelle globale dans la mesure où la consommation d'énergie liée au chauffage des secteurs résidentiel et tertiaire en 2020 est seulement de 10.4% inférieure à celle de 2005 si l'on prend en compte la chaleur renouvelable produite par le chauffage urbain pour le scénario 2. Cette diminution est clairement faible en comparaison aux 19,8% observés dans le cadre du scénario 1 et surtout par rapport à l'objectif de réduction des consommations d'énergie de 38 % d'ici à 2020 (en énergie primaire hors EnR) affiché dans la loi Grenelle 1.

Tableau 27 : Evolution des consommations énergétiques liées au chauffage des parcs bâtis résidentiel et

tertiaire en 2020-2	บรบ (en energie prim	ane et no	JIS EIIK)					
Prise en compte de				2012		2020		2050
la chaleur renouvelable produite par le chauffage urbain	Secteur	2005	Donnée	Evolution par rapport à 2005	Donnée	Evolution par rapport à 2005	Donnée	Evolution par rapport à 2005
			Scér	nario 1				
	Résidentiel (TWh EP)	420,2	400,1	-4,8%	338,3	-19,5%	212,2	-49,5%
Sans	Tertiaire (TWh EP)	131,3	127,1	-3,2%	112,6	-14,2%	112,6	-14,2%
	Total (TWh EP)	551,4	527,2	-4,4%	450,9	-18,2%	324,8	-41,1%
	Résidentiel (TWh EP)	419,5	398,2	-5,1%	332,2	-20,8%	203,5	-51,5%
Avec	Tertiaire (TWh EP)	130,9	126	-3,7%	109,2	-16,5%	108,7	-17,0%
	Total (TWh EP)	550,4	524,2	-4,8%	441,4	-19,8%	312,2	-43,3%
			Scér	nario 2				
	Résidentiel (TWh EP)	420,2	427,2	1,7%	389,8	-7,2%	305,2	-27,4%
Sans	Tertiaire (TWh EP)	131,3	127,1	-3,2%	112,6	-14,2%	112,6	-14,2%
	Total (TWh EP)	551,4	554,3	0,5%	502,4	-8,9%	417,8	-24,2%
	Résidentiel (TWh EP)	419,5	425,3	1,4%	383,6	-8,5%	296,4	-29,4%
Avec	Tertiaire (TWh EP)	130,9	126	-3,7%	109,2	-16,5%	108,7	-17,0%
	Total (TWh EP)	550,4	551,3	0,2%	492,9	-10,4%	405,1	-26,4%


La figure 11 montre, pour les 2 scénarios, l'évolution des consommations énergétiques (GPL, charbon, fioul, electricité, gaz et bois) liées au chauffage du secteur résidentiel sur la période 2005-2050. La figure 12 montre quant à elle l'évolution des consommations de bois dans les secteurs résidentiel, tertiaire, industriel et chauffage urbain. On constate une moindre réduction des consommations du secteur résidentiel et tertiaire (en énergie primaire et hors EnR) dans le cadre du scénario 2 par rapport au scénario 1 et qui s'explique par le fait que, malgré une augmentation très importante du nombre de logements chauffés au bois, la biomasse ne gagne pas suffisamment de parts de marché en termes de réponse aux besoins de chauffage du secteur résidentiel. Par ailleurs, les résultats de ce même scénario, qui, on le rappelle, respecte l'ensemble des objectifs de développement de la biomasse énergie fixés par la PPI Chaleur, indiquent que la part du résidentiel dans les consommations de bois énergie de l'ensemble du périmètre étudié passe de 87% à 61% en 2020. Selon les documents prospectifs officiels, les secteurs de l'industrie, du chauffage urbain et dans une moindre mesure le tertiaire devront donc soutenir de manière significative l'augmentation des consommations de biomasse énergie. L'évolution après 2020 de la part du résidentiel dans les consommations de bois, soit un maintien à hauteur de 60% pour le scénario 2 et une légère augmentation de 70 à 75% pour le scénario 1, s'explique par la stagnation de la pénétration du bois dans les mix énergétiques des réseaux de chaleur urbains et du secteur industriel qui a été paramétrée.

En termes de répartition territoriale (voir tableau 28 et figure 13)¹⁶, on constate une diminution de la part représentée par la ZAS 3 dans les consommations de bois liées au chauffage des secteurs résidentiel et tertiaire et des réseaux de chauffage urbain. Cette dernière passe en effet de 76% en 2005 à 70% en 2050 pour le scénario 1 et à 67% pour le scénario 2. La pénétration du bois dans le mix énergétique des réseaux de chauffage urbain apparaît comme l'une des explications à cette tendance à la baisse.

38/54 **ADEME**

¹⁶ On rappelle une nouvelle fois que les données de consommations du secteur industriel à l'échelle de la ZAS n'ont pu être reconstituées dans le cadre de cette étude. Ce paramètre est déterminant à l'heure d'interpréter les résultats des simulations obtenues en termes de répartition territoriale.

Figure 11 : Evolution des consommations énergétiques liées au chauffage du secteur résidentiel en 2020-2050 pour les scénarios 1 (haut) et 2 (bas)

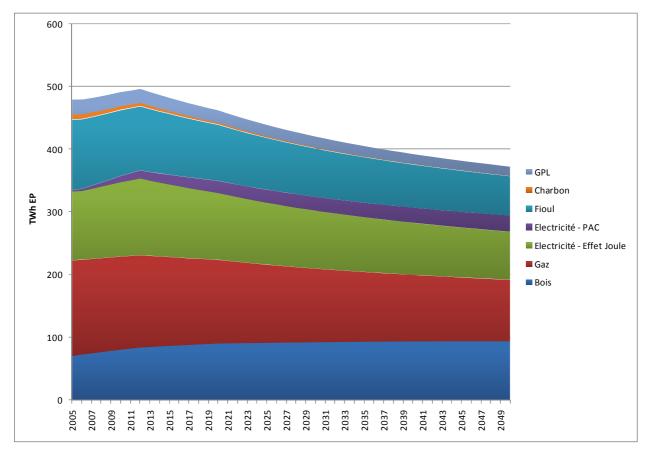
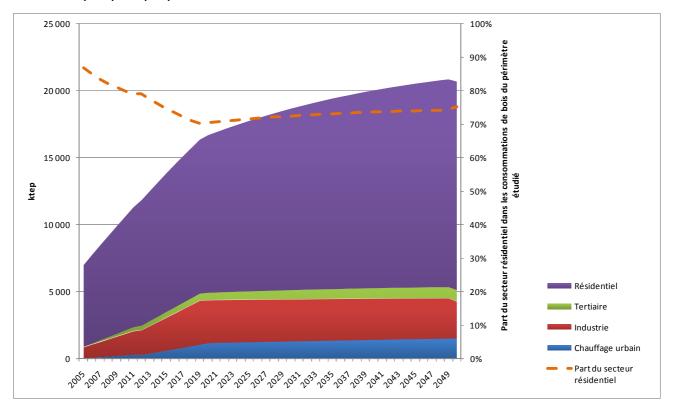
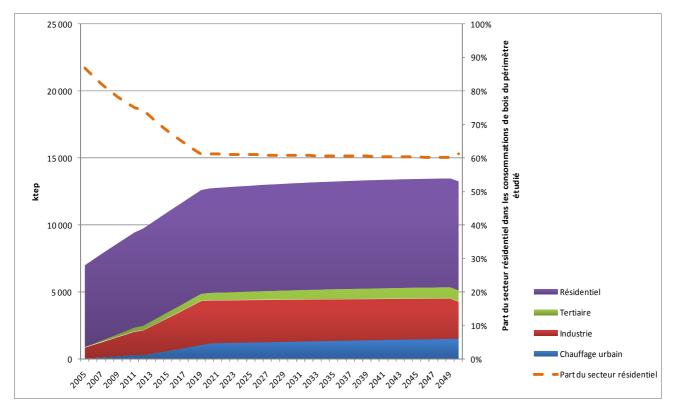




Figure 12 : Evolution des consommations de bois énergie des périmètres étudiés en 2020-2050 pour les scénarios 1 (haut) et 2 (bas)

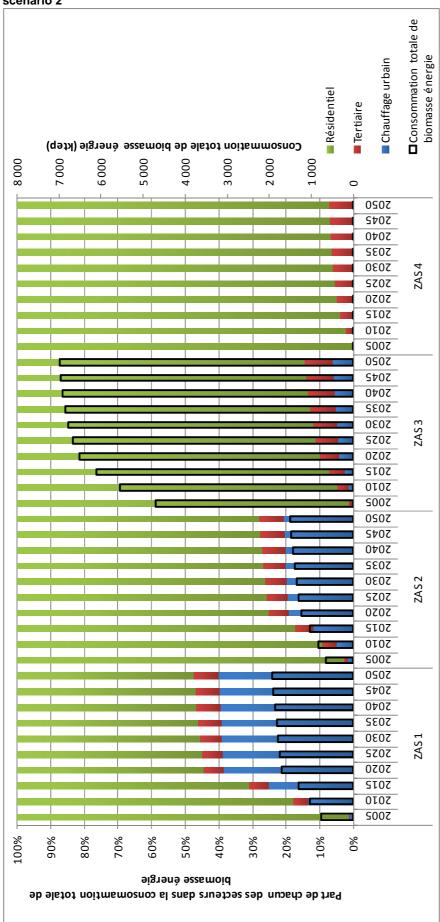

ADEME 40/54

Tableau 28 : Evolution des consommations de bois liées au chauffage des secteurs résidentiel et tertiaire et des réseaux de chauffage urbain par Zone Administrative de Surveillance de la qualité de l'air en 2020-2050 (en ktep)

			Scén	ario 1					Scén	ario 2		
Année	ZAS 1	ZAS 2	ZAS 3	ZAS 4	Total général	Part de la ZAS3	ZAS 1	ZAS 2	ZAS 3	ZAS 4	Total général	Part de la ZAS3
2005	767	666	4 721	30	6 184	76%	767	666	4 721	30	6 184	76%
2010	1 194	969	6 819	36	9 019	76%	1 035	852	5 556	31	7 475	74%
2015	1 636	1 276	8 430	41	11 383	74%	1 321	1 042	6 118	32	8 513	72%
2020	2 171	1 580	9 677	46	13 473	72%	1 713	1 242	6 531	32	9 518	69%
2025	2 339	1 733	10 463	49	14 584	72%	1 755	1 302	6 671	32	9 760	68%
2030	2 496	1 871	11 102	53	15 521	72%	1 796	1 355	6 782	32	9 966	68%
2035	2 640	1 996	11 613	56	16 305	71%	1 836	1 403	6 868	32	10 139	68%
2040	2 772	2 107	12 017	59	16 955	71%	1 874	1 445	6 930	32	10 281	67%
2045	2 892	2 206	12 328	61	17 487	70%	1 910	1 482	6 971	32	10 395	67%
2050	2 999	2 293	12 562	63	17 917	70%	1 943	1 514	6 996	32	10 485	67%

ADEME 41/54

Figure 13 : Evolution des consommations de bois liées au chauffage des secteurs résidentiel et tertiaire et des réseaux de chauffage urbain par Zone Administrative de Surveillance de la qualité de l'air en 2020-2050 pour le scénario 2

42/54

4.3.2 Emissions de polluants atmosphériques en 2020-2050

4.3.2.1 Clés d'interprétation des résultats

L'analyse des contraintes réglementaires actuelles et à venir en matière de qualité de l'air, des plafonds d'émissions de polluants qui pourraient être mis en place à l'échelle européenne en 2020 ou encore de l'état de référence 2005 sur les concentrations de polluants a permis d'établir des clés d'interprétation des résultats des simulations prospectives en termes d'émissions de GES et de polluants atmosphériques.

Ces clés d'interprétation, décrites ci-après, concernent l'ensemble des émissions en France et pas uniquement celles du périmètre de cette étude.

Pour les émissions de SO2, NOx et COVNM, des plafonds d'émission ont été fixés par la directive 2001/81/CE pour fin 2010 pour les pays de l'Union Européenne. Le plafond fixé pour 2010 pour les NOx ne sera pas atteint dans un contexte de pressions réglementaires pourtant très fortes et étendues suite à la mise en place du programme national de réduction (arrêté du 8 Juillet 2003). Le plafond fixé pour le SO2 est déjà respecté en 2008 selon les dernières données CITEPA de décembre 2009. Celui pour les COV devrait être atteint mais la situation reste relativement fragile. Le plafond NOx est celui qui pose le plus de problème de respect en 2010.

Des plafonds beaucoup plus faibles sont envisagés pour 2020. Les PM2,5 seront intégrées dans le panel de polluants pris en compte. Une nouvelle directive est attendue et en ce moment, le Protocole de Göteborg est en cours de révision au niveau de la CEE-NU, dans le cadre de la lutte contre la pollution atmosphérique à longue distance. Les émissions de SO2, NOx, PM2,5 et COVNM ne doivent donc pas augmenter à l'échelle nationale par rapport à l'année de référence 2005. Une diminution des émissions est même vivement conseillée pour ces polluants par rapport à 2005. Il est à noter qu'en 2005 les émissions de NOx et SO2 dues à la combustion de la biomasse sont marginales au regard des émissions nationales. Pour les TSP, PM10 et PM1,0, les mêmes contraintes que pour les PM2,5 doivent être appliquées car il s'agit de la même problématique : ces polluants sont émis en proportions non négligeables, par la combustion du bois dans le secteur du chauffage domestique en particulier. Ces polluants sont également très surveillés et réglementés en termes de qualité de l'air (cf : plan particules et code de l'environnement).

Pour les HAP, les émissions nationales proviennent essentiellement de la combustion du bois. Une augmentation des émissions de ces polluants par la biomasse énergie aurait donc un impact très fort sur les émissions nationales des HAP. De plus, la concentration dans l'air ambiant du BaP est réglementée (comme pour le CO, le plomb, l'arsenic, etc.). C'est pourquoi une augmentation des HAP est déconseillée.

En ce qui concerne le CO, l'arsenic, le cadmium, le nickel et le plomb, des valeurs de concentrations maximales dans l'air sont définies par la réglementation sur la qualité de l'air. Ces valeurs sont applicables depuis 2005 pour le CO et le plomb et seront applicables en 2012 pour le cadmium, le nickel et l'arsenic. C'est pourquoi une augmentation des émissions de ces polluants est déconseillée.

Enfin, en ce qui concerne le chrome, le cuivre, le mercure, le sélénium, le zinc et les dioxines/furanes (PCDD-F), il n'existe actuellement pas de valeurs limites à respecter, définies par la réglementation sur la qualité de l'air. Cependant, en ce qui concerne les émissions de PCDD-F, celles-ci augmentent avec la teneur en chlore du combustible. La combustion d'importantes quantités de bois potentiellement chargé en chlore, pourrait donc augmenter significativement les émissions. C'est pourquoi aucune recommandation n'est proposée pour ces polluants sauf pour les PCDD-F pour lesquelles une augmentation des émissions sur le plan national est déconseillée.

ADEME 43/54

4.3.2.2 Résultats 2020-2050

En ce qui concerne la lutte contre le réchauffement climatique dans le secteur du chauffage (résidentiel, tertiaire, industriel et réseau de chaleur), on constate que les scénarios élaborés permettent respectivement d'aboutir en 2050 à une réduction de plus de 42 % des émissions de GES par rapport à 2005 pour le scénario 1 et de 34% pour le scénario 2 (voir tableau 29).

Les émissions de polluants caractéristiques de la combustion du bois tels que les HAP, les poussières (TSP, PM10, PM2,5, PM1,0) ou encore les COVNM diminuent notablement sur la période 2005-2020 malgré l'importante croissance des consommations de bois. L'évolution des émissions reste globalement décroissante sur la période 2020-2050 malgré la poursuite du recours massif à la biomasse énergie. A titre d'exemple, on peut relever que les émissions globales de TSP ont diminué de plus de 40% entre 2005 et 2050 dans le cadre du scénario 1 et de près de 50% pour le scénario 2.

Cette tendance s'explique notamment par le choix de renouveler à partir de 2006 les appareils de chauffage domestique par des appareils performants. Cet « effet performance » qui joue un rôle majeur pour le secteur résidentiel (voir tableaux 30 et 31) se retrouve dans une moindre mesure dans les secteurs industrie et chauffage urbain où les chaufferies sont désormais systématiquement équipées de filtres à manches ou d'électrofiltres qui permettent de capter les poussières et les polluants particulaires à des niveaux très importants¹⁷.

L'ensemble de ces observations invitent à relativiser les résultats de diminution globale des émissions de polluants caractéristiques du bois dans la mesure où ils font apparaître les hypothèses posées en termes d'évolutions des facteurs d'émissions et de taux de renouvellement des systèmes comme tout à fait déterminantes. Plus concrètement, ces résultats indiquent que les impacts en termes d'émissions de polluants atmosphériques à l'échelle nationale¹⁸ d'une augmentation aussi conséquente des consommations de bois sont acceptables si un important effort de renouvellement des appareils anciens par des appareils performants est consenti conjointement.

Sur la vingtaine de polluants atmosphériques étudiés, les NOx sont les seuls polluants pour lesquels une augmentation des émissions à l'horizon 2020 est observée dans les résultats des simulations. Bien que limitée (+6% pour le scénario 1 toutes énergies et +2% pour le scénario 2 toutes énergies), cette hausse s'avère problématique dans la mesure où la France connaît déjà des difficultés pour respecter le plafond d'émissions correspondant à ces polluants. La part du bois énergie dans les émissions totales (pour le chauffage des secteurs résidentiel, tertiaire, industriel et chauffage urbain) de NOx passe de 10% en 2005 à 32% en 2020 pour le scénario 1 et 27% pour le scénario 2 (Voir Tableau 29). La biomasse énergie joue donc un rôle prépondérant par rapport aux autres énergies dans l'évolution des émissions de NOx. Cette évolution s'explique par une hausse significative des consommations de cette énergie, par le renouvellement du parc de systèmes domestiques de chauffage au bois mais aussi par l'hypothèse prise par défaut dans le modèle prospectif d'absence d'équipement de traitement des NOx pour les chaufferies biomasse. L'évaluation technique et économique de la mise en œuvre d'un traitement de NOx sur les chaufferies biomasse a été réalisée et est présentée au chapitre suivant.

Par ailleurs, les simulations réalisées font apparaître l'existence d'un pic des émissions globales de NOx en 2020 (voir figure 14). La décroissance observée par la suite s'explique notamment par la stagnation de la pénétration du bois dans les mix énergétiques des réseaux de chaleur urbains et du secteur industriel qui a été paramétrée lors de l'élaboration des scénarios.

Enfin, l'analyse de l'évolution des émissions de polluants atmosphériques pour le scénario 2 à l'échelle de la ZAS (voir tableaux 32 et 33) permet d'identifier une stabilité entre 2005 et 2020 dans les ZAS 1 et 2 des émissions des différents métaux. Il convient donc de poursuivre la vigilance et la surveillance de ces métaux. A noter la baisse des émissions de dioxines-furanes issues de la combustion de la biomasse quelque soit la ZAS considérée.

44/54

-

ADEME

¹⁷ En l'absence de données précises concernant le parc de chaufferies biomasse et en estimant à 20 ans la durée de vie moyenne d'une chaufferie, ll a été considéré que l'ensemble du parc de chaufferies au bois et sous-produits du bois industrielles ou destinées à la production de chaleur distribuée par les réseaux de chauffage urbain respectera en 2030 la Valeur Limite d'Emission (VLE) de référence pour les TSP de 30 mg/Nm3 en 2010, soit environ 17 g/GJ (contre 100 g/GJ en moyenne actuellement). Cette hypothèse a été posée dans le but de prendre en compte le fait que, dans ces secteurs, toute nouvelle installation utilisant la biomasse énergie (création ou remplacement d'une chaufferie existante) est équipée d'un système de traitement des poussières (électrofiltre notamment).

¹⁸ L'acceptabilité globale des scénarios réalisés du point de vue de la qualité de l'air est une nouvelle fois à considérer avec précaution dans la mesure où le traitement à une échelle agrégée ne permet pas de déceler des éventuels problèmes de pollution atmosphérique à des échelles locales. L'utilisation d'un pas de temps annuel et non pas mensuel voire journalier invitent également à la prudence quant aux conclusions à tirer des résultats prospectifs obtenus.

Tableau 29 : Evolution des émissions directes de polluants atmosphériques liées à l'utilisation du bois et sousproduits du bois (hors liqueurs noires) pour le chauffage des secteurs résidentiel et tertiaire, la production de chaleur des réseaux de chauffage urbain et l'utilisation de combustibles dans l'industrie en 2020-2050

cl	nale	eu	ır	de	25		és	ea	ıu) C	h	au	ff	aç	јe	u	rb	ai	n	et	ľ	ut	ili	Sã	ati	01							
	isation du bois énergies	2050		717.	20	35%	72		387	788	706	706	282	7.90	72%	73%	***	4%	748	74%	82%	27%	98%	38%	296	34%	38%	98%	100%	24.6	38%	62%	70%	777	82%
	Part des émissions liées à l'utilisation du boi dans les émissions toutes énergies	2020		727.	20	29%	7,		2%	27%	746	268	229	39%	72%	717	4%	3%	%E8	717.	82%	30%	38%	38%	34%	92%	38%	39%	100%	226	39%	61%	87%	75%	80%
	art des émissio dans les én	2002		84%	70	16%	7.7		7,	701	296	31%	299	43%	73%	269	4%	3%	85%	289	83%	38%	38%	100%	36%	34%	100%	38%	100%	27.6	39%	70%	75%	81%	85%
		2050		23649	0	2 2 13	1183		5 735	65 075	72 380	775 462	1522	230	7 528	4 965	140	1762	14 415	1121	46 447	10 560	25 254	2 154	2 419	1470	1252	629	3 440	203	13 675	49.818	46 080	44 156	42 704
Scénario 2	Emissions liées à l'utilisation du bois	2020		31270	0	2 126	1316		5 425	61721	95 328	822 636	1602	242	7 927	5 2 2 9	146	1855	15 180	1181	48 913	11711	27 118	2 313	2 597	1579	1344	878	3 694	219	14 686	57 609	53 563	51544	50 103
	Emissions liée	2005		74 840	0	1711	1935		2 928	22 952	226 651	1329 088	1952	288	9 6 2 6	6363	164	2 260	18 490	1438	59 580	18 210	48 901	4 170	4 670	2 857	2 429	1233	6999	386	26 488	108 256	102 274	99 687	98 211
	54	2050		33 472	119 099	6 382	121 780		210 384	198 672	80 468	858 831	2 591	634	10 429	6 788	3447	48 067	17 740	1519	56 733	39 631	25 572	2 170	2 530	1557	1258	635	3 450	209	13 749	79746	66 063	57 036	51860
	Emissions toutes énergies	2020		43668	150 168	7 305	153 349		257 221	226 327	105 252	960 798	2 820	615	11 008	7 414	3 305	57.211	18 354	1656	59 601	39 257	27 577	2 330	2 751	1716	1352	685	3 7 0 9	226	14 798	95 140	79 399	68 792	62 834
	Emission	2005		89 609	180 398	7 331	184 552		309 421	221863	238 437	1458 867	3 474	862	13.214	9178	4 594	85 028	21774	2 104	71566	47.858	49 500	4 189	4 865	3 040	2 439	1244	6 688	396	26 638	154 987	135 638	122 757	115 939
	on du bois rgies	2050	re (GES)	75%	20	48%	2%	hériques	4%	43%	31%	33%	85%	43%	777	78%	22	200	85%	79%	85%	37%	38%	100%	38%	38%	100%	38%	100%	38%	100%	269	78%	84%	88%
ı	des émissions liées à l'utilisation du dans les émissions toutes énergies	2020	Gaz à Effet de Serre (GES)	74%	70	36%	7,	Polluants atmosphériques	3,2	32%	212	212	219	43%	75%	74%	7.4	7,	85%	74%	84%	36%	38%	38%	36%	35%	100%	38%	100%	38%	100%	65%	72%	79%	83%
ı	Part des émissions liées à l'utilisation du bois dans les émissions toutes énergies	2005	Ö	84%	70	16%	77		71	10%	35%	31%	28%	43%	73%	269	4%	3%	85%	289	83%	38%	38%	100%	36%	34%	100%	38%	100%	22.6	38%	70%	75%	81%	85%
	bois	2050		25 865	0	3 457	1615		8 8 4 4	31965	78 564	971633	1984	301	9.815	6 473	185	2 2 9 7	18 794	1462	60 558	16 872	36 700	3 125	3 521	2 131	1813	923	5 001	230	19 880	62 738	58 355	56 172	54 106
Scénario 1	Emissions liées à Putilisation du	2020		33.946	0	2 788	1577		7 079	76 250	102 995	972 325	1879	284	9 2 3 6	6 132	172	2176	17 801	1385	57 359	15 445	35 272	3 005	3 380	2 052	1745	988	4 807	280	19 105	67 790	63 235	61 012	59 189
Sc	Emissions liées	2005		74 840	0	1171	1935		2 928	22 952	226 651	1329 088	1952	288	9 6 5 6	6363	164	2 260	18 490	1438	59 580	18 210	48 901	4 170	4 670	2 857	2 429	1233	6 669	386	26 488	108 256	102 274	99 687	98.211
ı		2050		34 415	103 305	7 173	106 252		201147	215 422	86 078	1047 191	3 052	202	12 715	8 295	3 490	48 602	22 119	1859	70 842	45 892	36 891	3 139	3 589	2 175	1819	928	5 008	292	19 923	90 716	76 387	67 101	61601
	Emissions toutes énergies	2020		45 675	141883	7 736	145 240		252 054	235 599	112 619	1073 289	3 0 3 0	299	12 377	8 316	3 830	57 530	20 975	1860	68 046	42 950	35 660	3 0 2 1	3 510	2 164	1753	893	4 820	287	19 199	104 240	87 991	77 180	70 999
	Emissions	2002		89 609	180 398	7331	184 552		309 421	221863	238 437	1458 867	3474	862	13.214	9178	4 594	85 028	21774	2 104	71566	47.858	49 500	4 189	4 865	3 040	2 439	1244	8899	396	26 638	154 987	135 638	122 757	115 939
							kt eq CO2/an				t eq C3H8/an											mg i-TEQłan													
		Polluant Unité		tłan	ktłan	tłan			tłan	tłan		tłan	kgłan	kgłan	kgłan	kgłan	kgłan	kgłan	kgłan	kgłan	kgłan			kgłan	kgłan	kgłan	, kgłan	⊃e kgłan	kgłan	k kgłan	.A kgłan	tłan	t than	,5 than	0 than
		Poll		Ť	200	NZO	Total GES		205	ě	COVNM	8	As	8	ŏ	3	£	Z	æ	ගී	Zu Zu	PCDD-F	8 HAP	g Bab	BP.	ΒĶΕ	IndPy	BghiPe	BaA	BahA	FluorA	TSP	PM10	PM2,5	PM1,0

ADEME 45/54

Tableau 30 : Evolution des émissions directes de polluants atmosphériques par périmètre étudié en 2020-2050

	a	b	l	ea	aι	1 ;	3()	:	E١	/(ılد	ut	ic	r	1	d€	98	É	èr	ni	S	si	0	n	s	d	ir	e	ct	е	s	d	е	p	ol
			2050		596	8 206	458	8 360		2664	16 430	653	11 375	347	52	1690	1116	32	1783	3 222	257	10 372	1429	312	25	36	28	#	7	48	•	159	3 933	3 136	2 485	2 049
	Tertiaire		2020		837	14 881	613	15 089					10 004													42	36	10	9	27	3	118	3 449	2 744	1 901	1 555
		-	2005		936	20 20 2	999	20 428		11687	25 175	838	5 801	89	4	921	126	24	8 087	255	58	787	36	134	0	45	43	2	1	8	1	38	2 106	1665	721	299
			2050		26 327	40 268	2711	41961		26.253	53 240	72 932	741797	791	122	3 301	2577	26	923	7 457	581	24 046	9808	24 851	2 103	2 433	1509	1222	919	3 380	197	13 388	46 854	44 410	43 332	42 109
	Résidentiel		2020		35 411	56.976	3 190	58 709		40.381	62 640	36 655	835 864	298	131	4 210	2 801	200	1050	7.876	828	25 810	12 446	26 786	2 261	2640	1850	1314	238	3614	213	14 421	57 010	54 333	53 196	51799
io 2			2005		80 718	69697	3291	72 413		58 797	64 413	229 482	1365 944	1866	238	8 027	5362	466	2 062	15 130	1188	49 052	27 789	48 993	4 143	4774	2 977	2417	1229	8838	382	26 425	114 957	109 719	107 576	105 569
Scénario			2050		6 033	992 09	2 579	61492		178 152	105 545	6 131	84 966	1049	131	2 706	2 370	2 752	40 716	2 885	499	11434	1799	195	81	19	ш	12	*	26	9	96	27 648	17 415	10 252	6851
	Industrie		2020		7 012	70 394	2 897	71470					98 754																21	45		169	33 465	21302	12 801	8 694
			2005		7694	81982	3 061	83 093		228389	119 380	7 628	82.754	1493	196	4 015	3415	3 590	60804	4 636	753	17 649	2 710	331	98	35	19	20	tt	44	6	164	37.227	23 704	14 045	3 2 2 0 2
			2050		516	9 760	635	1966		3315	23 457	752	20 694	+0+	329	2 132	725	999	4 645	4 176	183	10 880	28 317	214	24	43	н	10	*	24	2	96	1311	1 103	996	851
	Chauffage urbain		2020		408	7.917	202	8 082		2 750	18 645	597	16 176	358	273	1879	683	465	3961	3 673	170	9 732	23 241	198	21	37	11	6	*	23	2	16	1 215	1 021	894	785
	8		2005		260	8 516	315	888					4 368													18	2	1	1	3	0	11	583	220	415	299
	Ī		2050	Serre (GES)	596	8 206	458	8 360	osphériques	2 664	16 430	683	11 375	347	25	1690	1116	32	1783	3 222	257	10 372	1429	312	25	36	28	11	2	40	•	159	3 933	3 136	2 485	2 049
	Tertiaire		2020	Gaz à Effet de Serre (GES)	837	14 881	613	15 089	Polluants atmosphériques																	45	38	10	2	27	3	118	3 449	2 744	1301	1 555
			2005		936	20 20 2	999	20 428		11687	25175	938	5801	89	4	176	126	24	8 087	255	58	191	35	134	n	42	43	2		5	1	38	2 106	1865	721	299
			2050			24 774	3 501	26 432		17 017	066 69	78542	930 157	1253	193	6 188	4 085	140	1458	11837	921	38 156	14 348	38 170	3 073	3492	2 126	1783	808	4 918	284	19 572	57.824	54 734	53 398	51850
	Résidentiel		2020		37 418	48631	3 620	50 599		35 215	71911	104 022	948 355	1143	173	5573	3 703	224	1370	10 598	828	34 254	16 139	34 869	2 953	3388	2 098	1715	872	4 724	274	18 823	111 99	62 324	61584	59 965
ario 1			2005			69 697	3291	2			64 413	229 482	1365 944	1668	238	8 0 2 7					1188	49 055	27 789	48 993	4 149	4774	2877	2417	1229	8638	382	26 425	114 957	109 719	107 576	105 569
Scénario			2050		6 0 3 3	60 566	2579	61492		178 152	105 545	6 131	84 966	1049	131	2706	2370	2752	40.716	2885	433	11434	1739	195	18	19	11	12	00	26	9	96	27648	17 415	10 252	6851
	Industrie		2020		7 012		2 997	02\$12		190 202	122 671	971.2	192 86	9401	LLI			807 8	,	9 550		811 21	2 623	¥EE	30	28	92	61	21	94	8	169	33 465	21302	12 801	8 694
			2005		¥89 L	81982	3061	8		528 389	119 380	2 628	92 28	1493	961	4 015	9198	069 E			292			331	30	28	61	20	81	**	8	164	722 78	23 704	940 #1	3 505
		l	2050		516	.6	635	296 6		3315	23	752	20 694	101		2		999	,	4 176	183	10 880	28 317	214	24	+3	П	10	+	24	2	96	1311	1 103	996	851
	Chauffage urbain		2020			7.917	202	8 082		2750	18 645	597	16 176	328		-	889	465	,,	3 673	170	9 732	23 241	198	21	37	н	6	•	23	2	91	1215	1 921	894	785
			2005		260	8516	315	8198		10 549	12 894	388	4368	247	211	986	276	515	14 076	1753	105	4 095	17.264	43	2	18,	2			É	ó	T.	269	550	415	299
			Unité		Van	ktłan	t/an	Kreq CCCHan		t/an	nen v	t eq C3H8/an	than	kgłan	kgłan	kgfan	kgřan	kgłan	kgřan	kgłan	kgřan	kgřan	mg i-TEQ/an	kgřan	kgfan	kgřan	kgfan	kgřan	kgłan	kgřan	kgłan	kgřan	than	tłan	tłan	Nan
			Polluant		CH4	200	N20	Total GES		205	NOs	COVNM	8	As	PO	ŏ	no	H ₂	N	94	Se	Zu	PCDD-F	SHAP	BaP	BbF	BKF	IndPy	BghiPe	BaA	BahA	FluorA	TSP	PMt0	PM2,5	PM1,0

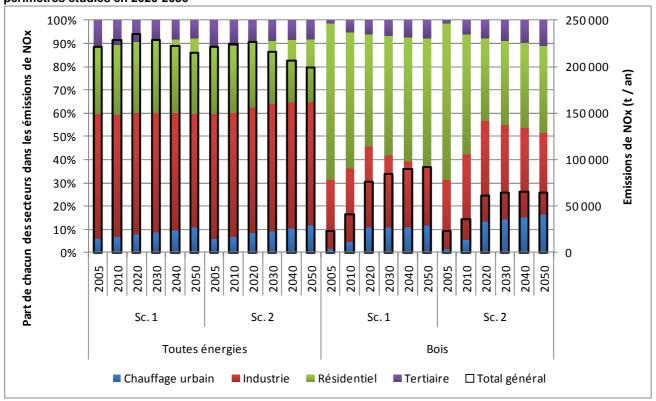

ADEME 46/54

Tableau 31 : Evolution des émissions directes de polluants atmosphériques liées à l'utilisation du bois et sous-produits du bois (hors liqueurs noires) par périmètre étudié en 2020-2050

р	r)	d	u	it	s	d	u	t	C	is	5 ((h	0	r	S	Ш	q١	ue	ŧι	ır	S	n	0	ır	es	S)	p	a	r	р	e	rı	m	e	tro
			2050		114	0	142	47		356	7 119	171	8 8 9 8	338	50	1673	1 103	28	392	3 203	249	10 322	1424	288	25	28	18	14	7	39	+	153	3 559	2 840	2 367	1 958
	Terriaire	-	2020		75	0	93	30		233	4 657	112	5 821	221	33	1094	722	61	256	2 096	163	6 752	931	189	91	119	12	6	2	56	2	100	2 328	1858	1548	1281
		L	2005		10	0	2	2		31	330	8	412	16	2	78	51	1	82	148	12	478	99	13	-	-	1	1	0	2	0	2	165	132	110	91
		l	2050		22 962	0	1 355	305		3 589	24 274	71350	721821	187	122	3882	2567	22	911	7.453	280	24 016	7.468	24 627	2 100	2357	1431	1221	613	3355	195	13.342	43.216	40.772	39 697	38 388
	identiel		2020		30 610	0	1 300	1046		3 361	22 083	94 338	804 107	828	129	4 151	2 738	82	872	7.949	618	25 613	8 497	26 468	2 256	2 533	1539	1312	099	3 606	211	14.341	50.648	47 970	46.849	46 191
	Béside	L	2005		74 718	0	1 018	1885		2546	15 391	226 468	1319 538	1589	234	7 861	5 185	134	1840	15 052	1171	48 501	16 682	48 592	4 143	e 639	2838	2 413	1226	6627	382	26324	104 558	99 320	97 220	28 167
Scénario 2	-	l	2050		368	0	460	150		1149	22 987	552	28 734	188	22	918	909	94	215	1759	137	2992	782	158	×	ş	10	80	*	23	2	88	1954	1559	1289	1075
	Industrie	-	2020		427	0	534	175		1 336	26 718	641	33 397	342	20	1693	1116	29	396	3 241	252	10 444	1441	292	25	29	18	14	2	40	+	155	3 602	2 874	2 395	1 381
	Ī	L	2002		109	0	137	45		341	6829	164	8 536	324	48	1605	1058	27	376	3 073	239	3 302	1366	277	24	27	17	14	2	38	0	211	3414	2 725	2 271	1878
			2050		205	0	526	*8		640	10 694	307	16 009	211	31	1844	689	81	244	1 999	156	6 443	688	180	91	81	н	6	*	54	2	96	1 089	909	793	989
	re urbain	-	2020		158	0	198	65		495	8 264	238	12 371	200	29	989	652	11	231	1894	147	6 103	842	170	122	11	ш	80	•	23	2	96	1 0 3 1	198	751	650
	Chauffage urhain	-	2005		8	0	10	3		24	402	12	802	23	0	113	75	2	26	217	- 12	863	96	20	2	2	1	1	0	e	0	10	118	86	98	74
			2050	3ES)	114	0	142	2.9	dnes	356	7 119	171	8 8 8 8	338	20	1673	1 103	28	392	3 203	249	10 322	1424	288	22	28	18	**	2	33	*	153	3 559	2 840	2 367	1 958
	aire		2020	Gaz à Effet de Serre (GES)	7.5	0	93	30	ants atmosphériques	233	4 657	112	5 821	221	33	1 094	722	51	256	2 096	163	6 752	931	189	2	13	12	6	2	26	2	100	2 328	1858	1548	1281
	Tertiaire	L	2005	Gaz à	2	0	2	2	Polls	16	330	8	412	16	2	78	51	1	18	148	12	478	99	13			1	1	0	2	0	2	165	132	110	91
	-	l	2050		25 178	0	2 598	1334		869 9	51 165	77 534	917 991	1249	193	6179	94.076	123	1446	11833	920	38 127	13 778	36.074	3 071	3 459	2 093	1782	206	4 916	283	19 548	56 137	53.046	51.713	50 387
	uriel		2020		33.286	0	1 962	1307		5 016	36 612	102 005	920 737	1116	121	5 5 2 0	3641	107	1292	10 570	822	34 060	12 232	34 621	2.949	3.316	2 012	1713	870	4.718	272	18 760	62809	57642	56.317	55 277
	Bésidentie	L	2002		74 718	0	1018	1885			15.391															4 639							104 558			
Scénario 1	-	l	2050		368	0	460	150		1149	22 987	552	28 734 1	186	27	918	909	91	215	1759	137	2 666	782	158	71	31	10	8	*	21	2	84	1954	1559	1239	1075
	هِ ا	-	2020		427	0	534	175		1336		641		342	20	1693	1116	29	396	3 241	252	111	1441	292	25	29	18	14	2	40	*	155	3 602	2 874	2 395	1981
	Industrie	L	2005		103	0	137	45		341		164	8 536 3		48	1605								277	24	27	17	14	2	38	0	147	3414	2 725		1878
	-		2050		205	0	256	84		0+9	10 694	307	16 009	211	31	1 0 4 4	689	81	244	1 999	156	6 443	688	180	91	81	11	6	*	54	2	96	1 089	606	793	989
	urhain		2020		158	0	198	65		495		238	12 371	200	29	686	652	17	231	1894	147			170	15	17	11	8	•	23	2	96	1031	198	751	650
	Chauffane urhain	-	2005		00	0	10	3		24	402	12	602	23	0	113	22	2	26	217	17		96	20	2	2	1		0	e	0	10	118	86	98	74
			Unité		tłan	ktłan	Nan	Areq CCCVan		Nan	tłan	t eq C3H8/an	Nan	kgłan	kglan	kgłan	kgłan	kgłan	kgłan	kgłan	kgłan	kgłan	mg i-TEQ/an	kgłan	kgłan	kgłan	kgłan	kgłan	kgłan	kgłan	kgłan	kgłan	Nan	tłan	tłan	Nan
			Polluant		#IO	200	N2O	SES		802	NOs	COVNM	00	As	20	ŏ	3	ř	ï	P.	Se	Zu	PCDD-F	8 HAP	Bar	PBF	BKF	IndPy	BghiPe	BaA	BahA	FluorA	ds L	PM10	PM2,5	PMI,0

47/54 ADEME

Figure 14 : Evolution des émissions de NOx liées aux consommations de bois et sous-produits du bois des périmètres étudiés en 2020-2050

ADEME 48/54

Tableau 32 : Evolution des émissions directes de polluants atmosphériques induites par le chauffage des secteurs résidentiel et tertiaire et la production de chaleur des réseaux de chauffage urbain par ZAS en 2020-2050

2	0	50)																							•							
		2050	124	455	23	465	176	536	304	2 979	30	1	22	14	1	111	40	*	129	37	85	7	8	5	4	2	11	1	46	199	186	178	172
	ZAS 4	2020	185	583	27	289	280	641	463	3692	10	1	23	15	1	117	42	4	136	58	112	8	11	7	10	3	15	1	9	275	259	247	240
		2002	434	999	29	\$89	358	\$63	1136	6840	o	1	40	27	2	132	22	9	242	128	258	22	25	16	13	9	32	2	139	618	586	566	556
		2050	19 061	22 798	1873	23 779	18 573	41863	54 578	562 331	865	160	4 284	2 757	148	1455	8 205	624	26 179	9 300	18 866	1539	1846	1141	929	467	2 552	150	10 172	37 155	34 842	33.671	32 547
	ZAS 3	2020	25 692	32 738	2 082	33 922	28 499	45 694	72 744	635 462	851	147	4154	2 709	180	2 476	7 903	613	25 343	11158	20 439	1726	2 013	1256	1003	506	2 758	163	11 004	44 089	41671	40 414	39 240
	Z	2002	59 720	41328	2 005	43 204	41195	43 079	173 193	1032 741	1311	199	8304	4 181	305	5137	11 9 10	345	38 452	19 424	37.074	3.140	3614	2.254	1829	930	5 021	292	19 995	85 702	81572	79 597	78116
Scénario 2		2050	3 642	10 130	624	10 400	4 378	E 363	938#	99 183	250	80	1 260	724	108	643	2 430	165	7 429	5 824	3376	286	332	207	166	88	455	22	1814	7 039	6 203	6 203	5.914
	ZAS 2	2020	4 518	13 831	869	14 142	7 083	17 510	11316	101.057	211	9 4	1044	610	88	1203	1 995	161	6 130	5 087	3.247	273	328	208	158	88	435	92	1739	7 624	7 132	8 807	6 530
		2002	9.261	16 963	631	17.372	11642	17 345	25 041	149 010	227	288	1028	909	122	4339	1301	155	5 9 3 3	5 4 0 2	5341	450	531	335	262	133	719	42	2 869	13 328	12 644	12 204	11308
		2050	4 611	25149	1283	25 644	9106	34.768	10 01	109 372	453	263	2 157	923	438	5142	4 180	228	11 562	22 071	3 050	260	322	183	148	74	90+	52	1621	7 703	7 111	6 731	6377
	ZAS 1	2020	6.261	32 622	1501	33.219	14 307	39.811	13 602	121831	407	232	2 017	913	417	5945	3 864	228	10 845	20 331	3 4 4 5	290	367	227	166	88	456	28	1826	3687	9032	8 523	8 129
		2005	12 499	39 459	1545	40 200	27 837	41364	31379	187 522	435	208	1827	919	575	14 617	3.251	244	9.290	20 194	6.496	547	663	417	317	161	863	51	3 471	18 113	17 132	16.345	15.854
		2050	128	403	22	414	152	919	323	3.715	2	1	31	21	1	113	69	9	189	83	137	12	13	8	7	3	19	ı	74	244	228	219	211
	ZAS 4	2020	201	260	29	573	247	878	514	4 151	9	1	23	13	1	113	54	9	173	74	148	12	15	8	2	+	20	1	80	318	299	287	278
		2002	434	999	23	684	358	634	1196	6840	8	1	40	27	2	132	75	9	242	128	258	22	25	16	13	9	38	2	139	618	586	286	926
	l	2050	20 303	11363	2 481	12 559	11734	54 482	60 372	716 106	1207	212	5.979	3874	180	1821	11451	876	36 638	14 578	28 059	2 386	2 707	1646	1384	704	3816	221	15 183	46 205	43366	41385	40 284
	ZAS 3	2020	27 180	26 430	2 432	27 754	24 609	53 873	78.279	728 156	1057	179	5176	3383	198	2.715	3 8 8 1	292	31653	13 956	27 052	2 2 3 2	2 635	1624	1331	878	3888	213	14 604	51319	48 498	47 080	45 722
io 1		2002	59 720	41328	2 005	43204	41195	43 079	173 193	1032 741	1311	199	6304	4 181	305	5137	11 910	945	38 452	19 424	37.074	3140	3 614	2.254	1829	930	5 021	292	19 995	85 702	81572	78597	78 116
Scénario		2050	3386	8 350	702	8638	3375	17 780	8 817	109 607	298	87	1 500	882	112	669	2 889	201	8 910	6 484		342	386		198	101	246	32	2 175	7.642	7 071	8748	6 432
	ZAS 2	2020	4 640	13 035	732	13.359	8298	18 354	11776	107 018	239	89	1182	701	100	1235	2 260	191	6 982	5 454	3.756	317	375	233	184	93	202	30	2 017	8 233	7 769	7 428	7 133
		2002	9.261	16 963	691	17.372	11642	17.345	25 041	149 010	227	58	1028	989	122	4 339	1901	155	5 933	5 402	5341	450	531	335	262	133	719	42	2 869	13 328	12 644	12 204	11908
		2050	4 585		1384	23 148	7 734	37 000	10 435	132 798	492	274	2		445	5 222	4 834	279	13 671		*				218			36	2 395	8 977	8 307		
	ZAS 1	2020	6.643	0	1545	32 083		40 822	\$26 \$I	135 210		238	2 219	9101	420	2883	4 250	256	12 090						212			96	2 330	10 839	221 01		9172
		2002	12 499	39 459	1545	00504	27 837	41364	31379	187 522	435	208	1827	919	575	14 617	3 251	244	9 2 9 0	20 194	6 496	547	663	417	317	181	698	51	3 471	18 113	17 132	16 345	15 854
		Unité	Nan	ktłan	Nan	Areg CO29an	t/an	than	t eq C3H8/an	than	kgřan	kgłan	kgłan	kgłan	kgłan	kgłan	kglan	kglan	kglan	mg i-TEQ/an	kgłan	kglan	kglan	kglan	kglan	kglan	kgřan	kgřan	kgłan	than	than	Nan	than
		Polluant	CH4	C02	N2O	SES	802	NOx	COVNM	00	As	PO	ŏ	n _O	Hg	Ni	P _b	Se	Zn	PCDD-F	8 HAP	BaP	BbF	BkF	IndPy	BghiPe	BaA	BahA	FluorA	TSP	PM10	PM2,5	PMt0

ADEME 49/54

Tableau 33 : Evolution des émissions directes de polluants atmosphériques liées à l'utilisation du bois et sousproduits du bois (hors liqueurs noires) pour le chauffage des secteurs résidentiel et tertiaire et la production de chaleur des réseaux de chauffage urbain par ZAS en 2020-2050

C	h	al	е	ur	•	dε	es	r	é	S	ea	aι	ΙX	(ЭĖ) (cł	na	ıu	ff	a	g	е	u	rk	S	ai	n	p	a	r Z	Z	AS
		2050	91	0	9	*	15	111	281	2 792	4		20	13	0	2	39	3	125	32	98	7	8	8	4	2	ш	1	45	180	168	162	158
	7.85.4	2020	142	۰	2	20	*	100	435	3438	4	-	21	41	0	2	41	3	131	38	110	6	II II	9	9	8	15	_	59	238	224	218	214
		2005	382	0	0	10	12	75	1166	6513	8	1	88	22	1	6	ಬ	9	235	81	255	22	24	92	13	9	88	2	138	260	532	520	515
		2050	17 343	0	1 170	727	3 028	25 331	53 689	921380	842	129	4 164	2747	80	975	7.974	620	26 632	6 657	18 708	1596	1792	1088	927	466	2 548	148	10 133	34 648	32.364	31262	30 480
	7.85.3	2020	23 216	0	1 092	828	2 789	21 518	71433	518 047	816	124	4 036	2882	22	944	7 728	109	24 900	7 223	20 202	1723	1934	1175	1001	504	2.753	181	10 946	39 725	37.397	36.348	35.678
io 2		2005	56 563	0	790	1433	1975	12 260	171468	1007 243	1242	183	6146	4 054	105	1438	11769	915	37 922	12 885	38 28	3135	3510	2147	1826	927	5014	289	19.918	78 722	74 752	73 151	72340
Scénario	r	2050	2 308	0	253	140	869	928 9	8 928	94 623	221	33	1 092	720	20	256	2 091	163	6 738	1437	3 3 3 3 5	282	319	194	165	83	454	27	1805	8 442	5 929	2 658	5 445
	7AS 2	2020	3 495	0	208	138	199	5 175	10 702	94 220	182	72	106	594	11	117	1724	134	5 557	1315	3 184	272	302	185	158	79	434	26	1724	8 515	0203	5 852	2692
		2005	8 0 15	0	E	203	279	1730	24 287	140 345	175	92	998	571	Æ	203	1659	129	5344	1785	5257	448	502	307	261	133	212	41	2848	11488	10 304	10 667	10 545
		2050	2 940	0	325	162	946	9 789	8 930	38 052	269	0+	1 333	879	24	312	2 552	198	8 222	1653	2 968	253	285	173	147	24	404	25	1607	9629	090 9	5776	5 547
	7.85.1	2020	3 8 8 0	0	286	173	734	8 210	12 117	106 263	258	39	1277	842	23	299	2 446	130	7 880	1694	3 327	284	319	194	165	83	453	27	1801	7 529	866.9	6 731	6534
		2005	9762	0	128	242	321	1998	29 566	166 446	202	8	1001	099	23	234	1917	149	6177	2 083	6346	541	909	371	315	160	865	20	3438	14 072	13 363	13 078	12.933
		2050	88	0	=	100	28	226	303	3554	9	-	30	20		2	28	*	988	69	901	15	13	8	2	8	13	-	74	230	215	208	202
	7AS 4	2020	160	0	8				487			-	27	81	1	9	52	4	168	54	146	12	14	8	2	4	20	1	7.9	284	268	261	255
		2005	382	0	10	10	21	162	1168					22			73					22					98					520	
		2050	19 492	0	2 101																							220					
	7AS 3	2020	25 205	0						713 890	1022										26 872	2 289	2574	1562	1330	875	3 862	212	14 559	47 780	45043	43 839	42.863
Scénario 1		2005	56 569	0	780	1433	1975	12 260	171468	1007 243	1242	183		4 0 24						12 885	36766	3135	3510	2147	1826	927	5014	289	19.918	78 722	74 752	73151	72340
Scén		2050		0		221		•		105 924	269								8 219		4 005	341	382		198	101	919		2 169	7 254	6 700	6 412	6 142
	7AS 2	L			564					100 910		32	-		61	243			60+9		3700	312		215	183	83	204		2 004	7.294	1189	229	6387
			8015		E				24287					571								448								11488	1		10 545
		2050	L		3 502		1288	13 783		1		5 51		1104		392			5 10 332			375		922		u 2	11 600	35					9269
	7851	L		0	363		926		13 483	120 221	2 299	0 45	-	975	7 27				7 9 125		4 262		9 409	1 248	5 211	107	189		2 3 0 8	8830	3 8230		3 7703
		200	9762		128	342	321	1938	29 26 6	166 446	202		1001	099		534	1917	149	817	2 083	6346	541	909	371	312	160	985	20	3 4 3 8	14 072	13.36	13 0 78	12 933
		Unité	tłan	ktłan	tłan	At eq CO29an	tłan	tłan	t eq C3H8/an	tłan	kgłan	kgran	kg/an	kg/an	kgran	kgran	kgłan	kgran	kgran	mgi-TEQ/an	kgran	kgłan	kgłan	kgran	kgłan	kgłan	kgran	kgłan	kgłan	tłan	tłan	tłan	Nan
		Polluant	OH4	005	N2O	SES	205	NOx	COVNM	8	As	S	ŏ	ņ	H ₉	iN.	Pb	Se	Zu	PCDD-F	8 HAP	BaP	BbF	BKF	IndPy	BghiPe	BaA	BahA	FluorA	TSP	PM10	PM2,5	PM10

ADEME 50/54

4.3.3 Systèmes de traitement des NOx et coûts associés

4.3.3.1 Etat des lieux

Une revue complète des systèmes de dépollution existants pour traiter les NOx a été réalisée dans le cadre de l'étude et est disponible intégralement dans le rapport. Cette synthèse présente les systèmes de traitement des NOx. Le tableau 34 présente les systèmes recensés et les coûts associés, qui peuvent être directement comparés à ceux d'EGTEI (Expert Group on Techno-Economic Issues) présentés à titre indicatif au tableau 35.

Les coûts des systèmes de traitement des NOx par SNCR pour des installations de combustion de biomasse sont compris entre 3 000 et 5 000 €/t de NOx évitée et entre 10 000 et 16 000 €/t de NOx évitée pour les systèmes SCR. A l'exception du secteur des chaudières au gaz naturel utilisées dans le secteur du raffinage, les coûts de de-NOx pour la combustion de la biomasse sont très largement supérieurs à ceux issus du modèle EGTEI pour d'autres process (raffinage, production de verre, etc.)

Tableau 34 : Systèmes de dépollution recensés dans le cadre de l'étude

Secteurs	Custème		Surcoûts		Taux de réduction des
concernés	Système	Investissement et installation	Maintenance (Coût annuel)	Unité	émissions de NOx*
Résidentiel	Réduction non catalytique sélective (SNCR)	5 00	0		50%
Collectif, Tertiaire	Réduction catalytique sélective (SCR)	16 00	00	€ par tonne de	20%
Industriel,	Réduction non catalytique sélective (SNCR)	3 00	0	NOX évitée	50%
Chauffage urbain	Réduction catalytique sélective (SCR)	10 00	00		20%

^{*} Emissions Avec Système de Dépollution = Emissions Sans Système de Dépollution * Facteur de diminution

Tableau 35 : Données issues du modèle EGTEI concernant le traitement des NOx

Secteur industriel considéré	Système	Coûts
	Mesures primaires permettant une réduction de 30 % des	
Raffinage : Chaudières au fuel lourd	émissions	1 600 € par t NOx évitée
Railliage . Chaudieres au luei louid	Mesures secondaires (mix SNCR et SCR) permettant une	
	réduction de 60 à 85 % des émissions	5 300 € par t NOx évitée
	Mesures primaires permettant une réduction de 30 % des	
Raffinage : Chaudières au gaz naturel	émissions	1 940 € par t NOx évitée
Kannage . Chaudieres au gaz naturei	Mesures secondaires (mix SNCR et SCR) permettant une	
	réduction de 60 à 85 % des émissions	20 800 € par t NOx évitée
Raffinage : FCC (Fluid Catalytic	Mesures secondaires permettant une réduction de 80 %	
Cracking)	des émissions	2 100 € par t NOx évitée
Installations de combustion de plus de		
500 MW - Charbon	Mesures primaires et SCR	827 à 2 320 € par t NOx évitée
Installations de combustion de plus de		
500 MW - Fuel lourd	Mesures primaires et SCR	5 790 € par t NOx évitée
Installations de combustion de plus de		
500 MW - Gaz naturel	Mesures primaires et SCR	2 930 € par t NOx évitée
Acide nitrique	SCR permettant 80 % d'efficacité	320 € par t NOx évitée
Acide Hitrique	SCR permettant 94 % d'efficacité	580 € par t NOx évitée
	Mesures primaires permettant une réduction de 65 % des	
Production de verre	émissions	220 € par t NOx évitée
Floudction de verte	Mesures secondaires permettant une réduction de 82 %	
	des émissions	1 880 € par t NOx évitée
	Mesures primaires permettant une réduction de 25 % des	
Production de ciment	émissions	200 € par t NOx évitée
i roduction de clinelle	Mesures secondaires permettant une réduction de 72 %	
	des émissions	740 € par t NOx évitée

ADEME 51/54

4.3.3.2 Evaluation économique de la mise en place de systèmes de traitement des NOx

Dans la mesure où les scénarios élaborés ont fait apparaître une augmentation des émissions de NOx jugée problématique au regard notamment du respect du plafond d'émissions correspondant à ce polluant, une évaluation de l'impact d'une politique contraignante de réduction des émissions d'oxydes d'azote (NOx) aussi bien en termes de qualité de l'air que de coûts associés a été réalisée. A cette fin, un raisonnement en surcoûts a été adopté, c'est-à-dire que seuls les coûts d'investissement et de maintenance liés à la mise en place des solutions de-NOx ont été évalués en considérant que la référence correspond au maintien des exigences actuelles en termes de qualité de l'air.

Le choix a été fait de tester l'influence de l'équipement de l'ensemble des chaudières industrielles et chaufferies urbaines au bois de systèmes de réduction secondaires des émissions de NOx (de-NOx), soit de systèmes de réduction non catalytique sélective (SNCR) soit de systèmes de réduction catalytique sélective (SCR). Il n'existe pas à l'heure actuelle de système de réduction de NOx pour le résidentiel individuel.

La mise en place des systèmes de dépollution choisis sur les chaufferies industrielles et les installations de chauffage urbain utilisant le bois permet une réduction des émissions de NOx sur la période 2005-2050 (voir tableau 36). A l'horizon 2020 les émissions globales de NOx du secteur toutes énergies diminuent de près de 6% pour le scénario 1 et de près de 11% pour le scénario 2 avec la mise en place de systèmes SCR. Avec les systèmes SNCR, ces diminutions sont respectivement de 2% et 6%. La seule action sur les parts des secteurs de l'industrie et du chauffage urbain alimentées par de la biomasse permet donc une réduction des émissions de NOx et rend acceptable en termes d'émissions de polluants atmosphériques, tout du moins à l'échelle nationale, les scénarios élaborés dans le cadre de cette étude.

Du point de vue économique (voir tableau 37), les surcoûts d'investissement liés à la mise en place des systèmes de-NOx dans l'industrie et la production de chaleur des réseaux de chauffage urbain s'élèvent à près de 52 millions d'euros par an en 2020 avec la mise en place de systèmes SNCR et à 280 millions d'euros par an en 2020 avec la mise en place de système SCR.

La mise en place de solution de traitement catalytique ou non sur des installations biomasse de puissances importantes est donc à étudier au cas par cas, afin de contribuer au mieux localement mais aussi globalement à la réduction des NOx.

Tableau 36 : Effet des systèmes de dépollution sur l'évolution des émissions de NOx en 2020-2050

	Secteur	Système		Scénario 1			Scénario 2	
Energie	Secteur	de-NOx	2005	2020	2050	2005	2020	2050
	Résidentiel	Aucun	64 413	71 911	69 990	64 413	62 640	53 240
	Tertiaire	Aucun	25 175	22 371	16 430	25 175	22 371	16 430
		Aucun	12 894	18 645	23 457	12 894	18 645	23 457
	Chauffage urbain	SCR	12 894	12 034	14 901	12 894	12 034	14 901
		SNCR	12 894	14 513	18 110	12 894	14 513	18 110
Toutes énergies		Aucun	119 380	122 671	105 545	119 380	122 671	105 545
	Industrie	SCR	119 380	101 297	87 155	119 380	101 297	87 155
		SNCR	119 380	109 313	94 051	119 380	109 313	94 051
		Aucun	221 863	235 599	215 422	221 863	226 327	198 672
	Total	SCR	221 863	207 614	188 477	221 863	198 342	171 727
		SNCR	221 863	218 108	198 581	221 863	208 837	181 831
	Résidentiel	Aucun	15 391	36 612	51 165	15 391	22 083	24 274
	Tertiaire	Aucun	330	4 657	7 119	330	4 657	7 119
	a. "	Aucun	402	8 264	10 694	402	8 264	10 694
	Chauffage urbain	SCR	402	1 653	2 139	402	1 653	2 139
		SNCR	402	4 132	5 347	402	4 132	5 347
Bois		Aucun	6 829	26 718	22 987	6 829	26 718	22 987
	Industrie	SCR	6 829	5 344	4 597	6 829	5 344	4 597
		SNCR	6 829	13 359	11 494	6 829	13 359	11 494
		Aucun	22 952	76 250	91 965	22 952	61 721	65 075
	Total	SCR	22 952	48 265	65 020	22 952	33 736	38 129
		SNCR	22 952	58 760	75 124	22 952	44 230	48 234

52/54

Tableau 37 : Surcoûts annuels d'investissement des systèmes de dépollution en 2020-2050 (millions d'euros)

Secteur	Système de-NOx	2005	2020	2050
Chauffage urbain	SNCR	0	12,4	16,0
Chaunage urbani	SCR	0	66,1	85,6
Industrie	SNCR	0	40,1	34,5
industrie	SCR	0	213,7	183,9
Total	SNCR	0	52,5	50,5
Total	SCR	0	279,8	269,5

ADEME 53/54

5 Conclusion

Au regard des résultats de l'étude, les conclusions principales pouvant être données sont les suivantes :

- L'utilisation de la biomasse énergie permet de réduire significativement les émissions de gaz à effet de serre dues à la combustion dans les secteurs du résidentiel, du tertiaire, de l'industrie et du chauffage urbain. Cependant, l'atteinte des objectifs fixés en matière de réduction des émissions de gaz à effet de serre dépend aussi pour une très large part de la capacité à réduire fortement les consommations énergétiques (toutes énergies confondues).
- La rénovation du parc d'appareils domestiques utilisant la biomasse doit continuer et être encouragée car elle permet de réduire significativement les émissions de polluants atmosphériques induites par les consommations de bois énergie. Il est nécessaire d'inciter les développements d'appareils très performants et également de mener des actions d'information des utilisateurs qui emploient encore trop souvent leurs équipements dans des conditions non optimales génératrices de polluants et peuvent même dans certains cas brûler des déchets divers.
- Le développement ambitieux de la biomasse énergie dans les secteurs résidentiel, tertiaire et industriel est pleinement compatible avec les objectifs de réduction des émissions de polluants atmosphériques. Hormis les NOx pour lesquels un développement des systèmes de traitement doit être favorisé dans les années à venir pour les grosses chaufferies, les résultats font état d'un important potentiel de réduction d'émissions sur la période 2005-2020, notamment en ce qui concerne les COVNM (-58%), les HAP ou les particules fines (-45% à -49%). Ces estimations s'appuient sur une consommation de bois maîtrisée, basée sur une demande en chauffage qui diminue en raison de l'amélioration de l'isolation des bâtiments prévue par le Grenelle de l'environnement, tout en augmentant de 3 millions le nombre de logements chauffés au bois. La réhabilitation thermique volontariste du bâti constitue donc l'une des conditions essentielles à un développement de la biomasse énergie respectueux de la qualité de l'air.
- La problématique des émissions de NOx reste à surveiller attentivement et à contrôler, même si la biomasse ne représente en 2005 que 2% des émissions nationales. Non seulement la France ne respecte pas certaines concentrations limites dans l'environnement mais de plus elle a beaucoup de difficultés en ce qui concerne le respect de son plafond d'émissions de NOx (que ce soit celui de 2010 ou celui en préparation pour 2020). La rénovation du parc d'appareils domestiques conduit à des émissions de NOx supérieures par rapport à la situation existante. Le bois étant plus émetteur de NOx que les combustibles fossiles de type gaz naturel et fioul, la mise en place de de-NOx sur des installations de puissances importantes pourrait être étudiée au cas par cas afin de limiter les émissions de NOx. Selon les scénarios considérés, le surcoût annuel d'investissement pour équiper toutes les nouvelles chaufferies biomasse de système de traitement des NOx est évalué entre 52 millions d'euros (système non catalytique ou SNCR, permettant une réduction de 2 à 6% des émissions entre 2005 et 2020) et 280 millions d'euros (système catalytique ou SCR, permettant une réduction de 6 à 11% des émissions entre 2005 et 2020).

ADEME 54/54