

solutions techniques et R&D pour le collectif et l'industriel

En partenariat avec :

COLLOQUE ANNUEL DU CIBE

ECHANGEURS ELECTROSTATIQUES « TURBOCLEAN »

UNE RUPTURE TECHNOLOGIQUE POUR LA BIOMASSE ENERGIE

Nicolas WILLERVAL
Président HEIZOMAT France

TOULOUSE Le 08 Octobre 2024

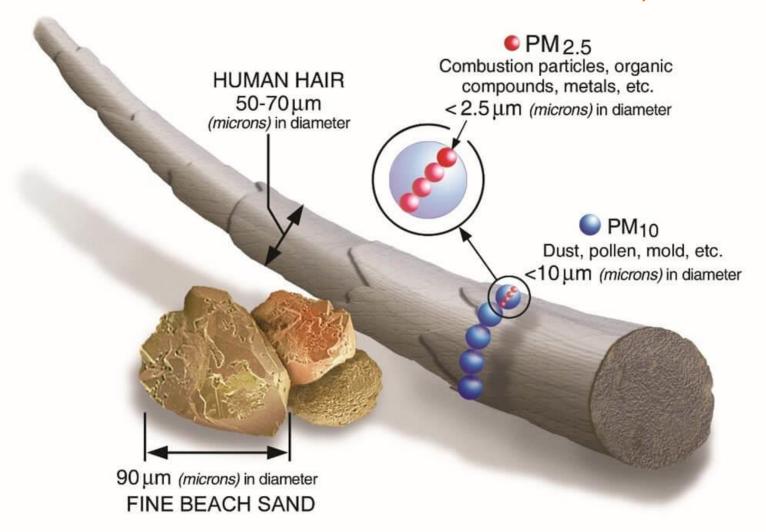
LEADER MONDIAL DE LA CHAUDIÈRE AUTOMATIQUE À BOIS DÉCHIQUETÉ

EN ALLEMAGNE

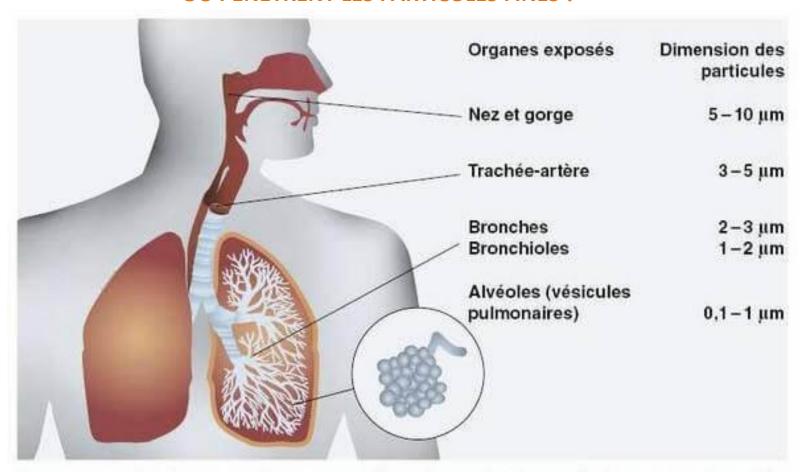
- Gamme de 15kW à 3MW
- Entreprise familiale allemande, pionnier du bois énergie depuis 42 ans.
- 330 collaborateurs en Allemagne dont 1 école interne de 40 apprentis
- 2 sites de production : + 32 000 m2 de production
- Fabrication de 1500 chaudières bois déchiqueté / an de puissance moyenne 400kW
- > 100% de la mécanosoudure en interne en Allemagne

EN FRANCE

- Une équipe dynamique, qualifiée, technique de 35 personnes
- Un bureau d'études expert Biomasse Energie
- Des techniciens spécialisés dans toute la France
- Un centre de formation et showroom de 1500m² à Chambéry (73)
- Un centre de formation et showroom de 400 m²
 à Tournus (71)



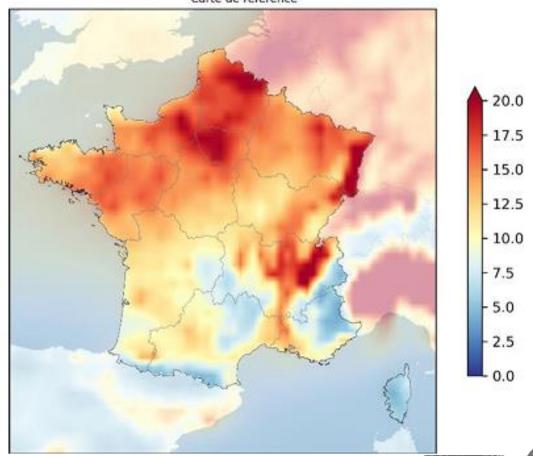
- 1. L'enjeu des particules fines
- 2. La réglementation sur les particules fines
- 3. Solution innovante : Le Turboclean



TAILLE COMPARATIVE DES PARTICULES FINES PM10 ET PM2,5

OU PENETRENT LES PARTICULES FINES?

Organes respiratoires exposés aux poussières fines: plus les particules sont petites, plus elles pénètrent profondément dans l'appareil pulmonaire.



LA GEOGRAPHIE DES PARTICULES FINES PM2,5 FRANCE – DECEMBRE 2022

Référence

Concentrations de PM2.5 moyennes sur le mois de décembre Carte de référence

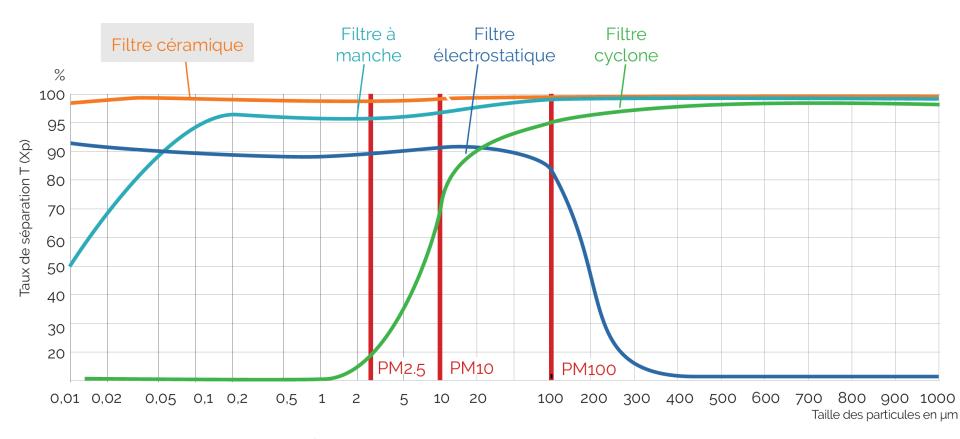
- 1. L'enjeu des particules fines
- 2. La réglementation sur les particules fines
- 3. Solution innovante : Le Turboclean

LA REGLEMENTATION SUR LES PARTICULES FINES

CAS INSTALLATION AVEC 1 CHAUDIERE

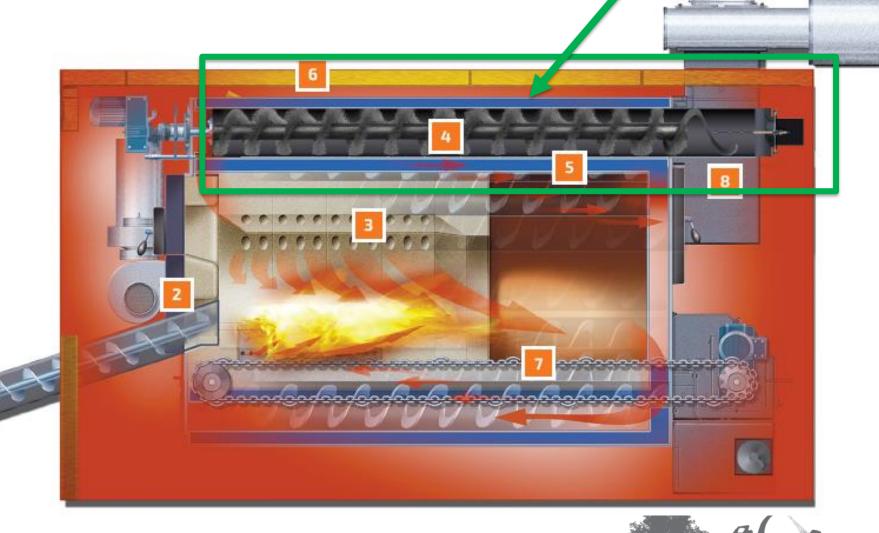
Ok	w 500	0kW 1000) kW
NORME	EN 303-5 (Classe 5)		
REGLEMENTATION	LABEL ECODESIGN UE 2015/1189		ARRETE ICPE 2910 DU 03/08/2018
CONDITION SUBVENTION ADEME	LABEL ECODESIGN UE 2015/1189 + FILTRATION COMPLEMENTAIRE	30 à 50 mg/Nm3 à 6% O2	30 à 50 mg/Nm3 à 6% O2
PERFORMANCE D'EMISSION	55 mg/Nm3 à 6% O2 (=40 mg/Nm3 à 10% O2)	30 à 50 mg/Nm3 à 6% O2	30 à 50 mg/Nm3 à 6% O2
PREUVE DE PERFORMANCE	ESSAI LABORATOIRE CERTIFIE	ESSAI SUR SITE	ESSAI SUR SITE

⇒ TENDANCE : VERS UN DURCISSEMENT DE LA REGLEMENTATION



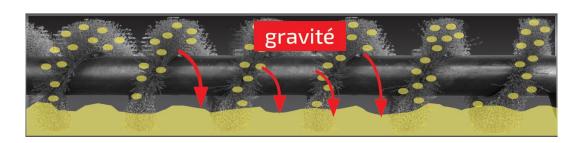
- 1. L'enjeu des particules fines
- 2. La réglementation sur les particules fines
- 3. Solution innovante: Le Turboclean

LES PRINCIPALES TECHNOLOGIES DE FILTRATION


Particules fines volatiles

Poussières non volatiles

NOTA: Diagramme de principe sans garantie sur les valeurs

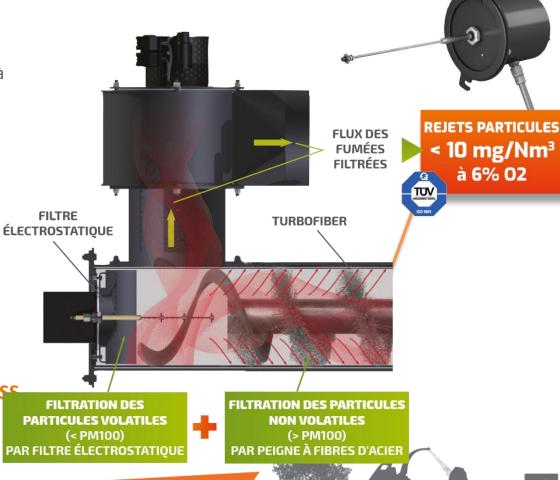


LARGES ÉCHANGEURS THERMIQUES HORIZONTAUX AVEC FILTRATION PAR TURBOFIBERS

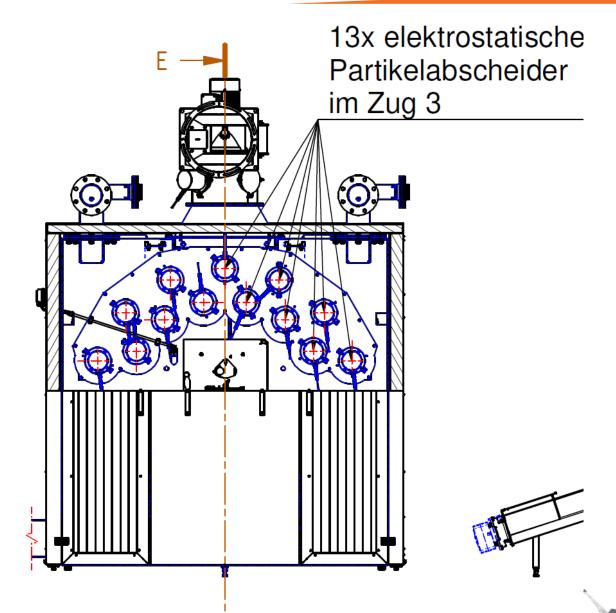
- Larges tubes échangeurs Ø 200mm construits horizontalement
- Turbulateurs rotatifs en fibre d'acier = filtre physique pour pour les particules VOLATILES et NON-VOLATILES
- Ramonage lustrage permanent des tubes échangeurs

ÉLECTRODES HEIZOCLEAN V2 INTÉGRÉES AUX ÉCHANGEURS

Electrodes intégrées dans les échangeurs :

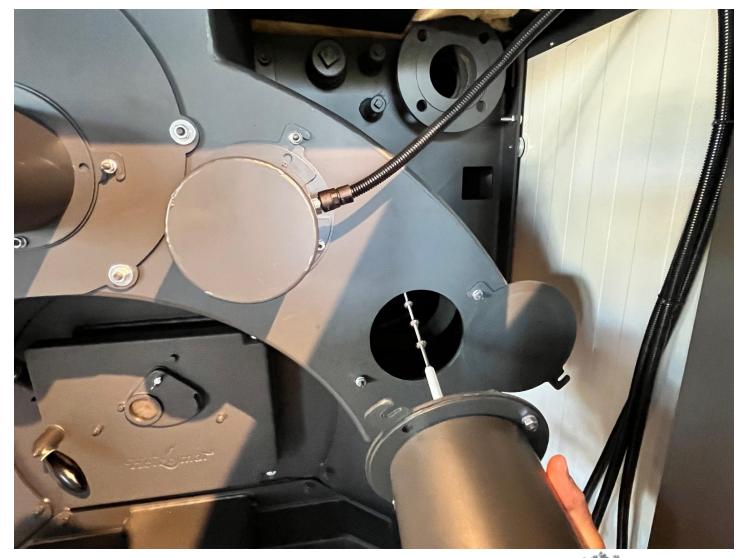

Ionisation des particules fines plus efficace à haute température (200 à 300°c)

MEILLEUR TAUX DE SEPARATION DES PARTICULES FINES


Aucun risque de condensation grâce à la technologie feu continu HEIZOMAT

FILTRATION EN CONTINUE SANS BYPASS

FILTRATION DES PARTICULES VOLATILES PAR FILTRE ÉLECTROSTATIQUE



RESULTATS EN LABORATOIRE

La combinaison de **TURBULATEURS A FIBRE D'ACIER** et des **ELECTRODES INTEGREES AUX ECHANGEURS** permet la filtration avec un excellent taux de séparation :

Des particules fines volatiles : <PM100

Des particules non-volatiles : >PM100

L'ensemble de la gamme a été testée en laboratoire certifié TÜV jusque 1000kW (selon norme EN 303-5)

RESULTATS = EMISSIONS EN POUSSIERES TOTALES < 10-20 mg/Nm3 à 6% O2 POUR TOUTE

LA GAMME

Heizkessel	Brenn- stoffe	V	enn-/Teil- värme- eistung¹	Abgas- Unterdruck Kesselende	Abgas- temperatur	Wirkungs- grad	Raum heiz- ungs						Emissio	nswerte	9				
			Ü			η	Jahres		CO			NO_X			C_XH_Y			Staub	
Baugrößen/ Ausführungen			kW	Pa	°C	%	nutz- ungs-	mg	/m³	mg/MJ	mg	/m³	mg/MJ	mg	g/m³	mg/M	mg	/m³	mg/MJ
						Bezug	grad				b	ezogen	auf eine	en O ₂ -G	ehalt vo	on .			
						Hi	%	10%	13%		10%	13%		10%	13%		10%	13%	
	Hack-	NL	33,0	30	107	93,3		9	6	4	192	139	94	2	2	1	3	2	1
RHK-AK 30 P	gut	TL	9,0	30	70	91,4	78	123	90	60	165	120	81	4	3	2	19	14	9
RHK-AK 40 P ²	Hack-	NL	40,0	28	112	93	79	27	19	14	144	100	70	5	4	3	3	2	1
RHK-AK 40 P 2	gut	TL	12,0	27	72	910	79	170	105	92	125	91	61	2	2	1	16	11	8
RHK-AK 50 P	Hack-	NL	50,0	25	118	9		_ '		25	97	70	47	9	7	5	3	2	1
KIIK-AK 30 I	gut	TL	15,0	23	74	9	(124	87	63	42	1	1	1	13	9	7
RHK-AK 60 P ²	Hack-	NL	60,0	24	117	9	IL	V		18	101	74	49	8	6	4	3	2	1
	gut	TL	18,0	22	77	9	SU	JD 🖊		90	90	65	43	2	1	1	12	8	6
RHK-AK 70 ² P	Hack-	NL	68,0	24	116	9				11	118	86	57	7	5	3	2	1	1
	gut	TL	20,0	22	80	9				61	94	68	45	2	2	2	11	8	6
RHK-AK 75 P ²	Hack-	NL	75,0	24	116		ustrie			11	127	92	61	7	5	3	2	1	1
	gut	TL	22,5	20	80	92,0		140	90	61	100	73	49	2	2	2	11	8	6
RHK-AK 99 P ²	Hack-	NL	99,0	23	115	93,5	78	7	5	3	157	114	75	5	4	2	2	1	1
	gut	TL	29,7	17	82	92,0		81	59	39	115	83	55	3	2	2	10	7	5
RHK-AK 100 P	Hack-	NL	100,0	23	115	93,5	78	7	5	3	157	114	75	5	4	2	2	1	1
	gut	TL	30,0	17	82	92,0		81	59	39	115	83	55	3	2	2	10	7	5

2

6

3

3

3

2

2

2

3

3

3

1

2

2

2

2

2

2

2

2

1

1

1

1

1

1

1

2

gut

Hack-

gut

Hack-

gut

Hack-

gut

Hack-

qut

Hack-

gut

Hack-

gut

Hack-

gut

Hack-

gut

TL

NL

TL

NL

TL

NL

TL NL

TL

NL

TL

NL

TL

NL

TL

NL

75,0

400,0

RHK-AK 150 P 2

RHK-AK 199 P 2

RHK-AK 200 P

RHK-AK 230 P

RHK-AK 250 P

RHK-AK 300 P 2

RHK-AK 400 P

RHK-AK 500 P

RHK-AK 600 P

150 - 600 kW

			1	1										
Heizkessel	Brenn-		Abgas-	Abgas-	Wirkungs-		Emissionswerte							
	stoffe	wärme-	Unterdruck		grad	heiz-								
		leistung¹	Kesselende			ungs								
					η	Jahres	CO		NO _x		C_XH_Y	(Staul	
Baugrößen/ Ausführungen		kW	Pa	°C	%	nutz- ungs-	mg/m³	mg/MJ	mg/m³	mg/MJ	mg/m³	mg/MJ	mg/m³	mg/MJ
					Bezug	grad		•	bezoge	en auf eine	n O₂-Gehalt v	on		
					Hi	%	10% 13%		10% 13%		10% 13%		10% 13%	

44

Industrie Service

78

78

21

17

74

45

45

45

45

45

94

25

110

91,7

91.4

92,2

91,1

114

87

114

44

26

40

47

40

4

2

2

2

0

0

0

Baugrößen/ Ausführungen			kW	Pa	°C	η %	Jahres nutz- ungs- grad	mg	CO /m³	mg/MJ
						Bezug Hi	%	10%	13%	
	Hack-	NL	150,0	19	124	92,7		22	16	11

15

28

29

134

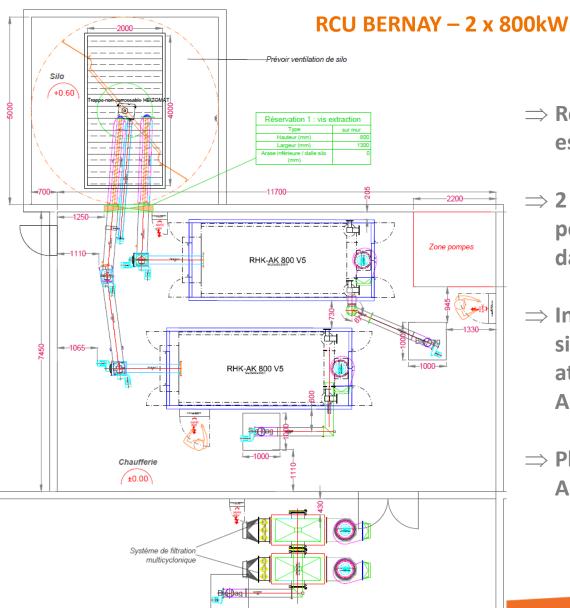
104

115

129

600 - 1000 kW

Heizkessel	Brenn- stoffe	W	nn-/Teil- <i>r</i> ärme- istung¹	Abgas- Unterdruck Kesselende	Abgas- temperatur	Wirkungs- grad	Raum heiz- ungs												
			Ü			η	Jahres		CO			NO_X			C_XH_Y			Staub	
Baugrößen/ Ausführungen			kW	Pa	°C	%	nutz- ungs-	mg	/m³	mg/MJ	mg	/m³	mg/MJ	mg	/m³	mg/M	mg	/m³	mg/MJ
						Bezug	grad			•	b	ezogen	auf eine	• en O₂-G	ehalt vo	n on			·
						Hi	%	10%	13%		10%	13%		10%	13%		10%	13%	
RHK-AK 600 PZ	Hack-	NL	600,0	31	129	92,3				67	95	69	46	0	0	0	1	1	1
KHN-AN 600 PZ	gut	TL	75,0	30	80	91,1				45	83	60	40	2	1	1	0	0	0
RHK-AK 800 PZ ²	Hack-	NL	800,0	42	127	92,2	IC	IV		66	112	82	54	2	1	1	9	6	4
KHK-AK 000 PZ -	gut	TL	240,0	47	82	91,9	SI	סנ		155	118	85	57	4	3	2	16	11	7
RHK-AK 1000 PZ	Hack-	NL	910	48	126	92,1		_/		66	122	89	58	3	2	1	13	9	6
KIIN-AK 1000 PZ	gut	TL	250,0	48	82	92,0 In	dustrie	Serv	ice	162	120	87	58	4	3	2	17	12	7

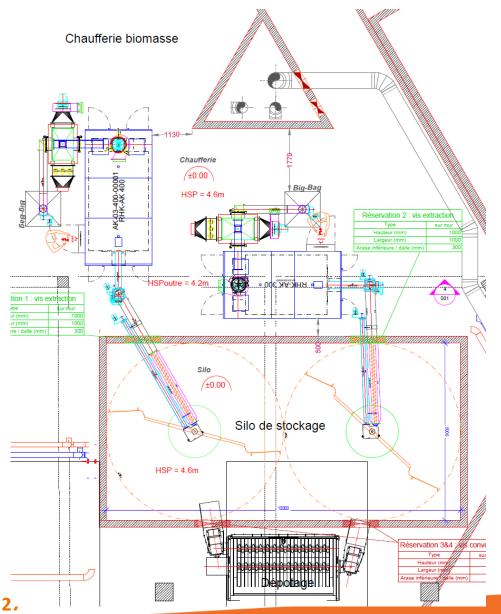


RESULTATS SUR SITE

- ☐ Les premières références équipées en TURBOCLEAN ont 1 an d'exploitation
- ☐ Les premiers essais sur site ont été réalisés sur 6 chaudières différentes
- ☐ Les valeurs d'émission en poussières ont été atteintes :
 - ⇒ Poussières <20-30mg/Nm3 à 6% O2
 - ⇒ Sur les 6 chaudières testées
 - ⇒ Dès le 1^{er} essai
 - ⇒ Sans préparation particulière
 - ⇒ Avec le combustible d'exploitation

- ⇒ Rénovation en sous-sol dans un espace très contraint
- ⇒ 2 chaudières 800kW + Filtration poussière à 30mg/Nm3 à 6% O2 dans une chaufferie de 87m²
- ⇒ Installation soumise à essais sur site à 30mg/Nm3 à 6% O2 pour attribution de la subvention ADEME
- ⇒ Plaquette forestière P45 M35 F10 A2

ESSAI SUR SITE CHAUDIERE 1: 3 fois 1h d'essais - RHK-AK 800


Récapitulatif des	récultate d'	accaic obto	nue nour lo	e nolluanto	recherchée	,						
Recapitulatii des	Essai 1	Essai 2	Essai 3	Moyenne	Ecart à la norme (O/N) ⁽²⁾	VLE (3)						
	Vites	se et débit vol	ume									
Vitesse des gaz à l'éjection (m/s)	-	-	-	-	-	-						
CO exprimé en CO Détail en annexe ANALYSE DE GAZ EN CONTINU												
Date et durée des essais	13/06/2024 63 min.	13/06/2024 82 min.	13/06/2024 60 min.	(N/A) ⁽¹⁾	(N/A) ⁽¹⁾	(N/A) ⁽¹⁾						
Concentration (mg/Nm3 Gaz sec à 6% O2)	281	261	206	249	Ν	250						
Flux massique	0,311 kg/h	0,293 kg/h	0,237 kg/h	0,280 kg/h	(N/A) ⁽¹⁾	-						
	NOs Détail en annexe	<mark>c exprimé en N</mark> ANALYSE DE G <i>A</i>										
Date et durée des essais	13/06/2024 63 min.	13/06/2024 82 min.	13/06/2024 60 min.	(N/A) ⁽¹⁾	(N/A) ⁽¹⁾	(N/A) ⁽¹⁾						
Concentration (mg/Nm3 Gaz sec à 6% O2)	184	190	193	189	N	500						
Flux massique	0,203 kg/h	0,212 kg/h	0,222 kg/h	0,212 kg/h	(N/A) ⁽¹⁾	-						
Poussières Détail en annexe PRELEVEMENTS MANUELS et en fin de rapport sur le PV Laboratoire												
Date et durée des essais	13/06/2024 63 min.	13/06/2024 82 min.	13/06/2024 60 min.	(N/A) ⁽¹⁾	(N/A) ⁽¹⁾	(N/A) ⁽¹⁾						
Concentration (mg/Nm3 sur gaz sec à 6% O2)	26,7	23,4	26,9	25,7	\circ	40						
Flux massique	0,0295	0.0262	0.0309	0,0289	(N/A) ⁽¹⁾							

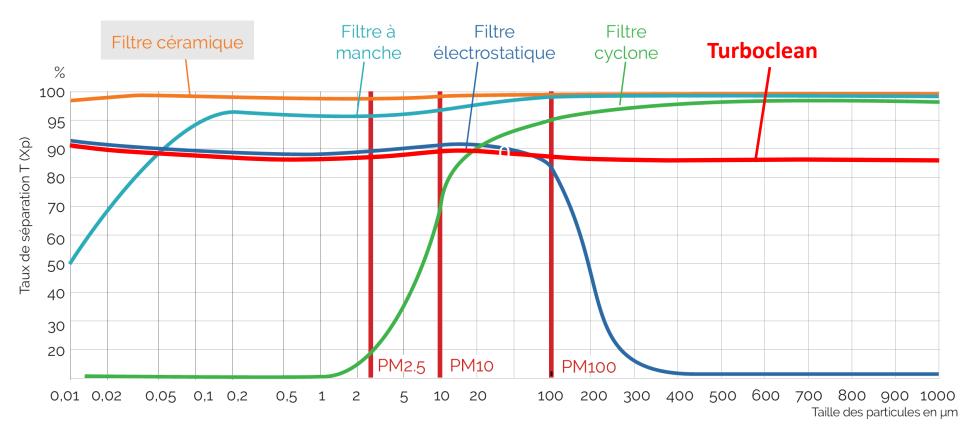
ESSAI SUR SITE CHAUDIERE 2: 3 fois 1h d'essais - RHK-AK 800

Récapitulatif des	résultats d'	essais obte	nus pour le	s polluants	recherchés							
11000p110110111111111111111111111111111	Essai 1	Essai 2	Essai 3	Moyenne	Ecart à la norme (O/N) ⁽²⁾	VLE (3)						
Vitesse et débit volume												
Vitesse des gaz à l'éjection (m/s)	-	-	-	-	-	-						
CO exprimé en CO Détail en annexe ANALYSE DE GAZ EN CONTINU												
Date et durée des essais	14/06/2024 61 min.	14/06/2024 60 min.	14/06/2024 60 min.	(N/A) ⁽¹⁾	(N/A) ⁽¹⁾	(N/A) ⁽¹⁾						
Concentration (mg/Nm3 Gaz sec à 6% O2)	223	137	162	174	N	250						
Flux massique	0,345 kg/h	0,198 kg/h	0,207 kg/h	0,250 kg/h	(N/A) ⁽¹⁾	-						
	NOs Détail en annexe	x exprimé en N ANALYSE DE G <i>A</i>										
Date et durée des essais	14/06/2024 61 min.	14/06/2024 60 min.	14/06/2024 60 min.	(N/A) ⁽¹⁾	(N/A) ⁽¹⁾	(N/A) ⁽¹⁾						
Concentration (mg/Nm3 Gaz sec à 6% O2)	233	238	241	237	N	500						
Flux massique	0,361 kg/h	0,346 kg/h	0,308 kg/h	0,338 kg/h	(N/A) ⁽¹⁾	-						
Poussières Détail en annexe PRELEVEMENTS MANUELS et en fin de rapport sur le PV Laboratoire												
Date et durée des essais	14/06/2024 61 min.	14/06/2024 60 min.	14/06/2024 60 min.	(N/A) ⁽¹⁾	(N/A) ⁽¹⁾	(N/A) ⁽¹⁾						
Concentration (mg/Nm3 sur gaz sec à 6% O2)	10,4	10,8	20,3	13,8	0	40						
Flux massique	0,0161 kg/h	0,0156 kg/h	0,0259 kg/h	0,0192 kg/h	(N/A) ⁽¹⁾	-						

OPHEOR PARC DES SPORTS 400kW + 300kW

- ⇒ Rénovation dans un espace très contraint
- ⇒ 2 chaudières 400kW + 300kW + Filtration poussière à 30mg/Nm3 à 6% O2 dans une chaufferie de 60m²
- ⇒ Installation soumise à essais sur site à 30mg/Nm3 à 6% O2 pour attribution de la subvention ADEME
- ⇒ Plaquette forestière P45 M35 F10 A2

ESSAI SUR SITE CHAUDIERE 400kW: 3 fois 1h d'essais - RHK-AK 400


			ı			
		10% de	50% de	100% de		
		charge	charge	charge		
		NO	x			
Date et durée des essais		19/03/24 01:03	19/03/24 01:04	19/03/24 01:04		
Plage horaire		09:21-10:24	11:26-12:30	13:00-14:04		
Concentration : mg/Nm3 sur gaz sec à O2 ref. eq. NO2	Oui	201	218	218	212	750
Flux massique : g/h	Oui	51,67	92,02	178	107	-
		poussi	ères			
Date et durée des essais		19/03/24 01:00	19/03/24 01:00	19/03/24 01:00		
Plage horaire		09:21-10:25	11:26 12:30	13:00-14:04		
Concentration : mg/Nm3 sur sec à 6 % d'O2	Non (31,77	20,34	10,64	20,92	30
Flux massique : g/h	Non	8,17	8,58	8,65	8,47	-

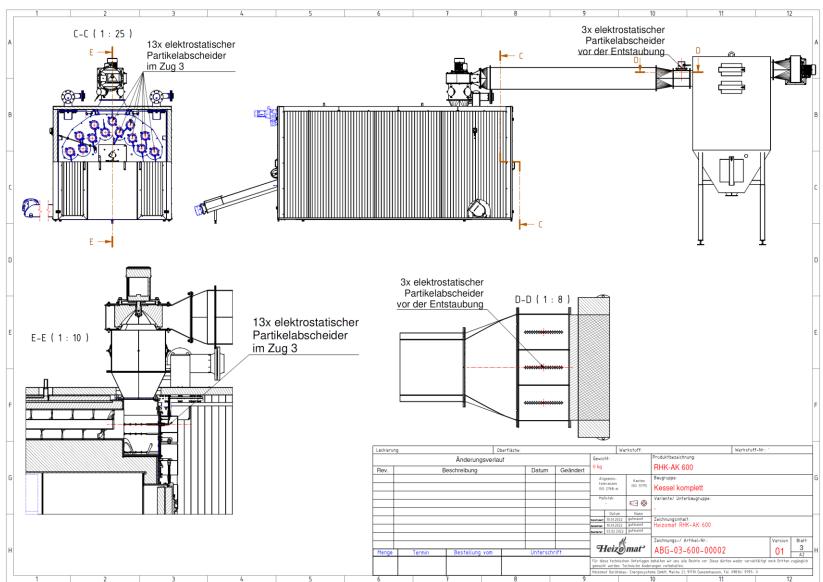
ESSAI SUR SITE CHAUDIERE 300kW: 3 fois 1h d'essais - RHK-AK 400

		10% de	50% de	100% de		
		charge	charge	charge		
		NO	х			
Date et durée des essais		18/03/24 01:00	18/03/24 01:00	18/03/24 01:13		
Plage horaire		10:08-11:08	11:30-12:30	12:42-13:55		
Concentration : mg/Nm3 sur gaz sec à O2 ref. eq. NO2	Oui	163	205	217	195	750
Flux massique : g/h	Oui	48,16	142	225	138	-
		poussi	ères			
Date et durée des essais		18/03/24 01:00	18/03/24 01:00	18/03/24 01:10		
Plage horaire		10:08-11:12	11:30-12:34	12:42-13:56		
Concentration : mg/Nm3 sur sec à 6 % d'O2	Non (30,87	11,61	25,76	22,74	30
Flux massique : g/h	Non	9,13	8,06	26,79	14,66	-

Particules fines volatiles

Poussières non volatiles

NOTA: Diagramme de principe sans garantie sur les valeurs



MERCI POUR VOTRE ATTENTION

